
Data Mashup
with Microsof t
Excel Using Power
Query and M

Finding, Transforming, and Loading Data
from External Sources
—
Adam Aspin

Data Mashup with
Microsoft Excel Using
Power Query and M
Finding, Transforming, and

Loading Data from
External Sources

Adam Aspin

Data Mashup with Microsoft Excel Using Power Query and M: Finding,
Transforming, and Loading Data from External Sources

ISBN-13 (pbk): 978-1-4842-6017-3			 ISBN-13 (electronic): 978-1-4842-6018-0
https://doi.org/10.1007/978-1-4842-6018-0

Copyright © 2020 by Adam Aspin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260173. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Adam Aspin
Stafford, UK

https://doi.org/10.1007/978-1-4842-6018-0

iii

Table of Contents

Chapter 1: ��Using Power Query to Discover and Load Data into Excel����������������������� 1

Power Query�� 2

The Data Load Process�� 4

Why Use Power Query?�� 7

The Queries & Connections Pane��� 8

Displaying the Queries & Connections Pane��� 9

The Peek Window��� 9

Peek Window Options��� 10

View in Worksheet�� 11

Deleting a Query�� 12

Understanding Data Load��� 12

The Navigator Dialog�� 13

Select Multiple Source Tables�� 15

Searching for Datasets��� 15

Navigator Display Options�� 17

Refresh��� 17

The Navigator Data Preview��� 18

Modifying Data��� 19

The Power Query Editor��� 20

Data Sources�� 20

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

iv

Source Data Properties�� 22

Query Properties�� 23

Load Destinations�� 25

Repurposing an Existing Connection�� 26

Load to Excel�� 28

Load to the Data Model�� 28

Conclusion��� 30

Chapter 2: ��Discovering and Loading File-Based Data with Power Query���������������� 31

File Sources��� 31

Loading Data from Files��� 33

CSV Files��� 33

Text Files�� 37

Text and CSV Options�� 38

Fixed-Width Text Files�� 40

Simple XML Files�� 41

Excel Files�� 43

Why Use Power Query to Connect to Excel�� 47

From Table/Range��� 48

Microsoft Access Databases�� 49

JSON Files�� 51

Conclusion��� 51

Chapter 3: ��Loading Data from Databases and Data Warehouses���������������������������� 53

Relational Databases��� 54

SQL Server��� 56

Automatically Loading Related Tables�� 60

Database Options��� 61

Searching for Tables��� 64

Oracle Databases��� 71

Other Relational Databases�� 74

Table of Contents

v

Microsoft SQL Server Analysis Services Data Sources�� 76

From Analysis Services�� 80

SSAS Tabular Data Warehouses��� 83

Types of Credentials When Connecting�� 87

Unable to Connect�� 87

Other Database Connections�� 88

Conclusion��� 88

Chapter 4: ��Loading Data from the Web and the Cloud��� 89

Web and Cloud Services�� 89

Web Pages�� 90

Online Services��� 90

Microsoft Azure�� 91

Web Pages��� 91

Advanced Web Options��� 93

Viewing the Source Web Page�� 94

Salesforce�� 95

Loading Data from Salesforce Objects��� 96

Salesforce Reports��� 102

Microsoft Dynamics 365�� 102

Azure SQL Database��� 104

Azure SQL Data Warehouse (Azure Synapse Analytics)��� 106

Connecting to SQL Server on an Azure Virtual Machine�� 108

Azure Blob Storage�� 110

Azure Security�� 112

Other Source Types�� 113

Conclusion��� 114

Chapter 5: ��Generic Data Sources��� 115

ODBC Sources�� 116

OLE DB Data Sources��� 125

Table of Contents

vi

OData Feeds��� 129

OData Options��� 132

Refreshing Data��� 132

Refreshing the Entire Data in the Excel In-Memory Model��� 133

Refreshing an Individual Query�� 133

Conclusion��� 134

Chapter 6: ��Structuring Imported Data��� 135

Extending Queries in Power Query�� 136

Editing Data After a Data Load�� 137

Transforming Data Before Loading��� 141

Query or Load?��� 141

The Power Query Editor��� 143

The Applied Steps List�� 144

The Power Query Editor Ribbons�� 145

Dataset Shaping��� 152

Renaming Columns�� 153

Reordering Columns��� 153

Removing Columns��� 155

Choosing Columns�� 156

Merging Columns��� 158

Moving to a Specific Column�� 161

Removing Records��� 162

Keeping Rows��� 163

Removing Duplicate Records��� 166

Sorting Data��� 167

Reversing the Row Order�� 168

Undoing a Sort Operation��� 168

Filtering Data��� 170

Selecting Specific Text Values�� 170

Finding Elements in the Filter List�� 171

Table of Contents

vii

Filtering Text Ranges�� 172

Filtering Numeric Ranges��� 173

Filtering Date and Time Ranges�� 174

Filtering Numeric Data��� 175

Applying Advanced Filters�� 177

Grouping Records�� 179

Simple Groups�� 179

Complex Groups��� 181

Count Rows�� 184

Saving Changes in the Query Editor��� 184

Exiting the Query Editor��� 184

Conclusion��� 185

Chapter 7: ��Data Transformation��� 187

Viewing a Full Record�� 188

Power Query Editor Context Menus��� 189

Using the First Row as Headers��� 190

Changing Data Type��� 192

Detecting Data Types�� 195

Data Type Indicators��� 195

Switching Data Types��� 196

Data Type Using Locale��� 197

Replacing Values�� 198

Transforming Column Contents�� 201

Text Transformation�� 201

Adding a Prefix or a Suffix�� 203

Removing Leading and Trailing Spaces�� 204

Removing Nonprinting Characters�� 204

Number Transformations�� 205

Filling Down Empty Cells��� 215

Table of Contents

viii

Extracting Part of a Column’s Contents��� 218

Advanced Extract Options��� 219

Duplicating Columns�� 221

Splitting Columns��� 222

Splitting Column by a Delimiter�� 223

Advanced Options for Delimiter Split�� 225

Splitting Columns by Number of Characters�� 226

Merging Columns��� 228

Creating Columns from Examples�� 229

Adding Conditional Columns�� 231

Index Columns��� 234

Conclusion��� 236

Chapter 8: ��Restructuring Data��� 237

The Power Query Editor View Ribbon��� 238

Merging Data��� 239

Extending a Query with Merged Data��� 240

Aggregating Data During a Merge Operation��� 244

Merge as a New Query��� 248

Types of Join��� 248

Joining on Multiple Columns�� 250

Preparing Datasets for Joins�� 252

Correct and Incorrect Joins�� 253

Examining Joined Data��� 254

Appending Data�� 256

Adding the Contents of One Query to Another�� 256

Appending the Contents of Multiple Queries�� 259

Changing the Data Structure�� 260

Unpivoting Tables��� 261

Pivoting Tables�� 263

Transposing Rows and Columns��� 265

Table of Contents

ix

Loading Data from Inside the Query Editor Directly��� 266

Error Display�� 267

Removing Errors��� 268

Viewing Errors�� 268

Data Transformation Approaches��� 269

Conclusion��� 269

Chapter 9: ��Complex Data Loads��� 271

Adding Multiple Files from a Source Folder��� 272

Filtering Source Files in a Folder��� 275

Displaying and Filtering File Attributes�� 278

Removing Header Rows After Multiple File Loads��� 280

Combining Identically Structured Files�� 280

Loading and Parsing JSON Files�� 281

The List Tools Transform Ribbon�� 283

Parsing XML Data from a Column�� 284

Parsing JSON Data from a Column�� 286

Complex JSON Files��� 288

Complex XML Files��� 294

Convert a Column to a List��� 295

Reusing Data Sources�� 296

Pinning a Data Source�� 297

Copying Data from Power Query Editor��� 298

Conclusion��� 299

Chapter 10: ��Organizing and Managing Queries��� 301

Managing the Transformation Process�� 301

Modifying a Step�� 302

Renaming a Step�� 303

Deleting a Step or a Series of Steps��� 304

Table of Contents

x

Discarding Changes��� 305

Modifying an Existing Step��� 306

Adding a Step��� 308

Altering Process Step Sequencing��� 309

An Approach to Sequencing��� 309

Error Records�� 310

Managing Queries�� 310

Organizing Queries��� 311

Grouping Queries�� 312

Duplicating Queries�� 314

Referencing Queries��� 315

Documenting Queries��� 316

Adding a Column as a New Query�� 318

Managing Queries from the Queries & Connections Pane��� 319

Conclusion��� 320

Chapter 11: ��Parameterizing Queries�� 321

Parameterizing Queries�� 321

Creating a Simple Parameter��� 322

Creating a Set of Parameter Values�� 324

Creating a Query-Based Parameter�� 326

Modifying a Parameter��� 328

Applying a Parameter When Filtering Records��� 329

Modifying the Current Value of a Parameter��� 331

Applying a Parameter to a Data Source�� 332

Other Uses for Parameters��� 334

Using Parameters in the Data Source Step�� 334

Applying a Parameter to a SQL Query�� 335

Query Icons��� 337

Conclusion��� 337

Table of Contents

xi

Chapter 12: ��The M Language��� 339

What Is the M Language?�� 340

M and the Power Query Editor��� 341

Modifying the Code for a Step�� 342

M Expressions�� 344

Writing M by Adding Custom Columns��� 345

The Advanced Editor�� 348

Expressions in the Advanced Editor��� 348

The Let Statement�� 350

Modifying M in the Advanced Editor��� 350

Syntax Checking��� 352

Basic M Functions�� 352

Text Functions�� 354

Number Functions�� 355

Date Functions��� 357

Time Functions��� 359

Duration Functions��� 359

M Concepts�� 360

M Data Types�� 361

M Values��� 362

Defining Your Own Variables in M��� 363

Writing M Queries�� 364

Lists�� 365

Creating Lists Manually�� 365

Generating Sequences Using Lists��� 367

Accessing Values from a List�� 367

List Functions��� 368

Records�� 368

Tables��� 370

Other Function Areas��� 372

Table of Contents

xii

Custom Functions in M�� 372

Adding Comments to M Code��� 374

Single-Line Comments��� 374

Multiline Comments��� 374

Conclusion��� 375

��Appendix A: Sample Data�� 377

Downloading the Sample Data��� 377

�Index�� 379

Table of Contents

xiii

About the Author

Adam Aspin is an independent business intelligence consultant based in the United

Kingdom. He has worked with SQL Server for over 25 years. During this time, he has

developed several dozen reporting and analytical systems based on the Microsoft

Analytics Stack.

Business intelligence has been Adam’s principal focus for the last 20 years. He has

applied his skills for a variety of clients in a range of industry sectors. He is the author

of Apress books: SQL Server 2012 Data Integration Recipes, Pro Power BI Desktop (now

in its third edition), Business Intelligence with SQL Server Reporting Services, and High

Impact Data Visualization in Excel with Power View, 3D Maps, Get & Transform and

Power BI.

A graduate of Oxford University, Adam began his career in publishing before moving

into IT. Databases soon became a passion, and his experience in this arena ranges from

dBase to Oracle, and Access to MySQL, with occasional sorties into the world of DB2.

He is, however, most at home in the Microsoft universe when using SQL Server Analysis

Services, SQL Server Reporting Services, SQL Server Integration Services, and Power

BI—both on-premises and in Azure.

A fluent French speaker, Adam has worked in France and Switzerland for many years.

xv

About the Technical Reviewer

Karine Aspin is a principal consultant with Calidra Ltd., a UK-based data and analytics

consultancy. A mathematics graduate of the Swiss Federal Institute of Technology,

Karine has worked at a range of IT companies including IBM Global Services.

xvii

Acknowledgments

Writing a technical book can be a lonely occupation. So I am all the more grateful for

all the help and encouragement that I have received from so many fabulous friends and

colleagues.

First, my considerable thanks go to Jonathan Gennick, the commissioning editor

of this book. Throughout the publication process, Jonathan has been both a tower

of strength and an exemplary mentor. He has always been available to share his vast

experience selflessly and courteously.

Heartfelt thanks go to Jill Balzano, the Apress coordinating editor, for calmly

managing this book through the production process. She succeeded—once again—in

the well-nigh impossible task of making a potentially stress-filled trek into a pleasant

journey filled with light and humor. Her team also deserves much praise for their

efficiency under pressure.

I also owe a debt of gratitude to my wife, Karine, for her time and effort spent

reviewing this book. Being a technical reviewer is a thankless task, but I want to say a

heartfelt “thank you” to her for the range and depth of her comments and for picking up

so much that otherwise would have gone unnoticed. The book is a better one thanks to

her efforts.

My thanks also go to Ann Gemer Tuballa for her tireless and subtle work editing and

polishing the prose and to the team at SPi Global for the hours spent preparing the book

for publishing.

xix

Introduction

Analytics has become one of the buzzwords that define an age. Managers want their staff

to deliver meaningful insight in seconds; users just want to do their jobs quickly and

well. Everyone wants to produce clear, telling, and accurate analysis with tools that are

intuitive and easy to use.

Microsoft recognized these trends and needs a few short years ago when they

extended Excel with an add-in called Power Query. Once a mere optional extension to

the world’s leading spreadsheet, Power Query is now a fundamental pillar of the Excel

toolkit. It allows a user to take data from a wide range of sources and transform them into

the base data that they can build on to add metrics, instant analyses, and KPIs to project

their insights.

With Power Query, the era of self-service data access and transformation has finally

arrived.

�What Is Power Query?
Power Query is a tool that is used to carry out ETL. This acronym stands for Extract,

Transform, Load. This is the sequential process that covers

•	 Connecting to source data outside the current Excel workbook (or

file if you prefer) and accessing all or part of the data that you need to

bring into Excel. This is the extract phase of ETL.

•	 Reshaping the data (the “data mashup” process) so that the resulting

data is in a form that can be used by Excel. Essentially, this means

ensuring that the data is in a coherent, structured, and complete

tabular format. This is the transform phase of ETL.

•	 Returning the data into Excel as a table in a worksheet or into the

Excel/Power Pivot data model. This is the load phase of ETL.

These three phases make up the data ingestion process. So it is worth taking a short

look at what makes up each one of them.

xx

�Connecting to Source Data
Gone are the days when you manually entered all the data you needed into a

spreadsheet. Today’s data are available in a multitude of locations and formats—and are

too voluminous to rekey.

This is where Power Query’s ability to connect instantly to 40-odd standard data

sources is simply invaluable. Is your accounting data in MS Dynamics? Just connect. Is

your CRM data in Salesforce? Just connect. Is your organization using a Data Lake?...you

can guess the reply.

Yet this is only a small part of what Power Query can do to help simplify your

analyses. For not only can it connect to a multitude of data sources (many of which

are outlined in Chapters 1 through 5), it does this via a unified interface that makes

connecting to data sources brilliantly simple. On top of this, you can use Power Query to

preview the source data and ensure that you are loading exactly what you need. Finally,

to top it all, the same interface is used for just about all of the available source data

connections. This means that once you have learned to set up one connection, you have

learned how to connect to virtually all of the available data sources.

In essence, part of Power Query is just another connection to external data. However,

its unified data access interface, range of available data sources, and sheer simplicity will

probably induce you to replace any data connections made using older technologies

pretty quickly.

�Data Transformation
Once you have established a connection to a data source, you may need to tweak the

data in some way. Indeed, you may even need to reshape it entirely. This is the data

mashup process—and it is the area where Power Query shines.

Power Query can carry out the simplest data transformation tasks to the most

complex data restructuring challenges in a few clicks. You can

•	 Filter source data so that you only load exactly the rows and columns

you need

•	 Extend the source data with calculations or data extracted from

existing columns of data

Introduction

xxi

•	 Cleanse and rationalize the data easily and quickly in

a multitude of ways

•	 Join or split source tables to prepare a logical set of data tables for

each specific analytical requirement

•	 Group and aggregate source data to reduce the quantity of data

loaded into Excel

•	 Prepare source data tables to become a usable data model

This list merely scratches the surface of all that Power Query can do to mash up your

data. It is, without hyperbole, unbelievably powerful at transforming source data. Indeed,

it can carry out data ingestion and transformation tasks that used to be the preserve of

expensive products that required complex programming skills and powerful servers.

All of this can now be done using a code-free interface that assists you in taking the

messiest source data and delivering it to Excel as limpid tables of information ready to

work with. If you wish to become a Power Query super-user, then you can extend its

possibilities using the built-in M language.

�Loading into a Worksheet or the Data Model
This final phase is the easiest by far. It is simply a question of telling Power Query where

to land the data. This can be one—or both—of

•	 A worksheet: Power Query can place the data from each source

query into a separate worksheet. Once in a worksheet, it is perfectly

“normal” Excel data. From here on you can do what you want to

the data in Excel just as you normally would using all the Excel

techniques that you have learned over the years.

•	 The data model: Also referred to, often, as the Power Pivot data

model (which is the term that I prefer to use), this is an in-memory

data store. It can handle many more rows of data than Excel—tens

of millions in some cases—and is normally the basis for pivot table

output in Excel. When dealing with large source datasets, it is often

the ideal destination for data that you have accessed using Power

Query, as it is compressed in memory (and consequently takes up

less space when saved to disk) and can easily exceed the 1,048,576

row limit of Excel worksheets.

Introduction

xxii

The data model and Power Pivot are extensive subjects in their own right, and this

book will not be looking at either of them in detail.

�Integrating Power Query into Daily Workflows
Power Query is completely integrated into the latest versions of Excel. This means that

you can use it seamlessly as part of your daily routines when ingesting and analyzing

data. Put simply:

•	 Data source connections, transformation routines, and data loading

into Excel are created once and can be reused whenever suits you.

•	 You can trigger manual data refreshes at any time—and these can be

total refreshes of every source connection in a workbook or refreshes

of a single source if you prefer.

•	 Data sources can be reused across different Excel workbooks.

•	 Power Query processes can be copied between different Excel files.

•	 Power Query processes (called queries) can be managed and

extended with interactive parameters to create immensely powerful

ETL processes.

•	 Power Query–based data flows can be customized and extended

using the built-in M language.

So, as is the case for nearly all your Excel-based work, you are likely to build once

and use often.

�The Evolution of Power Query
Power Query has evolved considerably over the years since it was first made available as a

downloadable add-in for Excel 2010. It was still optional for Excel 2013 and only attained

the status of being completely integrated into Excel by the 2016 version. Indeed, it suffered

a name change at that point and was accessed under the heading “Get & Transform.”

Since around 2017—and since the Excel 2019 version—it has reverted to being

Power Query once again. This is the version that is the subject of this book. This does not

mean that you cannot use the techniques described in these pages with earlier versions

Introduction

xxiii

of the product. However, it will mean that certain aspects of the Excel interface that you

use to launch Power Query will be slightly different from those described in Chapters 1

through 5. These differences are essentially minor and should not present any

difficulties to experienced Excel users.

This is made possible due to the fact that Power Query is accessed using a separate

interface. It is called from inside Excel, but exists in its own parallel universe. This

ensures a consistent look and feel whatever the version of Excel that you are using. The

entry point into Power Query may change with Excel versions—but the product itself

remains the same. Just remember that the range of available data sources will depend on

the version of Excel that you are using. Some of the “enterprise-level” data sources are

only available in Pro and Enterprise subscriptions to Excel.

�How to Use This Book
If you wish, you can read this book from start to finish as it is designed to be a progressive

tutorial that will help you to learn Power Query. However, as Power Query is composed

of four main areas, this book is broken down into four sets of chapters that focus on the

various key areas of the product. It follows that you can, if you prefer, focus on individual

topics in Power Query without having to take a linear approach to reading this book.

•	 Chapters 1 through 5 show you how to connect to a range of varied

data sources and bring this data into Excel using Power Query.

Depending on the source data that you need to use, you may only

need to dip into parts of these chapters to find guidance on how to

use a specific source data type.

•	 Chapters 6 through 9 explain how to transform and clean data so that

you can use it for analysis. These data transformations range from

the extremely simple to the potentially complex. Indeed, they are as

potentially vast as data itself. You may never need to apply all of the

extensive range of data modification and cleansing techniques that

Power Query can deliver—but just about everything that it can do is

explained in detail in these chapters.

Introduction

xxiv

•	 Chapters 10 and 11 explain how to tame the real world of data

loading and transformation. Here you will learn how to organize and

manage your queries, as well as how to add parameters to make them

more interactive and resilient.

•	 Chapter 12 introduces you to M—the language that Power Query uses

to transform your data. Using M you can push your data ingestion

and transformation routines to new heights that are simply not

possible using just the Power Query interface.

�On to Learning Power Query
This book comes with a small set of sample data that are used to create the examples

that are used throughout the book. I realize that it may seem paradoxical to use a tiny

dataset for a product that can handle tens of millions of rows of data, but I prefer to use

a comprehensible set of source data so that the reader can concentrate on what is being

learned, rather than the data itself.

It is inevitable that not every question can be anticipated and answered in one book.

Nonetheless, I hope that I have answered many of the data ingestion and transformation

questions that you might encounter and—more importantly—have given you the

approaches and the confidence to resolve most of the Power Query challenges that you

might meet when applying this product to solve real-world problems.

As a final point, the information on “pure” Power Query in Chapters 6–12 is

independent of Excel. So if you are learning Power Query in Power BI, SQL Server

Integration Services, or the Power BI Service, you can find a wealth of relevant

information to assist you in your data transformation projects.

I wish you good luck in using Power Query, and I sincerely hope that you have as

much fun using it as I did in writing this book.

Introduction

1
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_1

CHAPTER 1

Using Power Query
to Discover and Load
Data into Excel
If you are reading this book, it is most likely because you need to use data. More

specifically, it may be that you need to take a journey from data to insight in which

you have to take quantities of facts and figures, shape them into comprehensible

information, and add the analysis that delivers clear meaning. More to the point, you

want to do all this using the spreadsheet that you know and trust—Microsoft Excel.

This book is all about that journey. It covers the many ways that you, an Excel user,

can transform external raw data into the information structures that enable you to

deliver high-impact analyses. This fresh approach presumes that you are not dependent

on central IT to help you to load data from external sources, nor do you need their

help on a regular basis. It is based on enabling the user to handle industrial-strength

quantities of source data using the world’s most popular spreadsheet in the shortest

possible time frame.

The keywords in this universe are

•	 Fast

•	 Decentralized

•	 Intuitive

•	 Interactive

•	 Delivery

https://doi.org/10.1007/978-1-4842-6018-0_1#ESM

2

Using the techniques described in this book, you can discover and load data from

a multitude of external sources. You can then, quickly and intuitively, transform and

cleanse this raw data to make it structured and usable. Once ready for use, you can load

it into either Excel worksheets or the Power Pivot data model in Excel and start using the

tool you already know so well—Excel—to provide detailed analytics.

It follows that this book is written from the perspective of the user. Essentially it is

all about empowerment—letting users define their own requirements and satisfy their

own needs simply and efficiently by building on their existing skills. The amazing thing

is that you can do all of this using Excel without needing any other tools or utilities. Your

sources could be in many places and in many formats. Nonetheless, you need to access

them, sample them, select them, and, if necessary, transform or cleanse them in order to

deliver your analyses. All of this is enabled by Power Query.

�Power Query
Power Query is one of the most recent additions to the Excel toolkit. Now fully integrated

into Excel, it allows you to discover, access, and consolidate information from varied

sources. Once your data is selected, cleansed, and transformed into a coherent table, you

can then place it in an Excel worksheet for detailed analysis or load it directly into Power

Pivot (the Excel data model), which is a natural repository for data when you want to

“slice and dice” it interactively.

Power Query allows you to do many things with source data, but the four main steps

are likely to be

•	 Import data from a wide variety of sources. This covers corporate

databases to files and social media to big data.

•	 Merge data from multiple sources into a coherent structure.

•	 Shape data into the columns and records that suit your use cases.

•	 Cleanse your data to make it reliable and easy to use.

There was a time when these processes required dedicated teams of IT specialists.

Well, not any more. With Power Query, you can mash up your own data so that it is the

way you want it and is ready to use as part of your self-service solution.

Chapter 1 Using Power Query to Discover and Load Data into Excel

3

This is because discovering, loading, cleansing, restructuring, and modifying source

data are what Power Query is designed to do. It allows you to accomplish the following:

•	 Data discovery: Find and connect to a myriad of data sources

containing potentially useful data. This can be from both public and

private data sources. This is the subject of Chapters 1 through 5.

•	 Data loading: Select the data you have examined and load a subset

into Power Query for shaping.

•	 Data modification: Modify the structure of each dataset that you have

imported.

•	 Filter and clean the data itself.

Although I have outlined these three steps as if they are completely separate and

sequential, the reality is that they often blend into a single process. Indeed, there could

be many occasions when you will examine the data after it has been loaded into Excel—

or clean datasets before you load them. The core objective will, however, always remain

the same: find some data and then sample it in Power Query where you can tweak, clean,

and shape it before loading it into Excel.

This process could be described simplistically as “First, catch your data.” In the world

of data warehousing, the specialists call it ETL, which is short for Extract, Transform, and

Load. Despite the reassuring confidence that the acronym brings, this process is rarely

a smooth, logical progression through a clear-cut series of steps. The reality is often

far messier. You may often find yourself importing some data, cleaning it, importing

some more data from another source, combining the second dataset with the first one,

removing some rows and columns, and then repeating these operations, as well as many

others, several times over.

In this and the following few chapters, I will try to show you how the process can

work in practice using Power Query. I hope that this will make the various steps that

comprise an ETL process clearer. All I am asking is that you remain aware that the

range of options that Power Query includes make it a multifaceted and tremendously

capable tool. The science is to know which options to use. The art is to know when to

use them.

Chapter 1 Using Power Query to Discover and Load Data into Excel

4

�The Data Load Process
Let’s begin with a rapid overview of what you need to do to get some data into Excel

(assuming that you have downloaded the sample data that accompanies this book from

the Apress website—this is explained in Appendix A). The following steps explain what

you have to do to load data from a source that you know well already—Excel itself. Yes,

I know that you can copy and paste data between workbooks, but that would be to miss

the point and miss out on all the incredible extra facets of data mashup that Power Query

can offer. In this initial case, the actual source of the data is irrelevant. It could come from

any of a few dozen available sources. Excel is simply an example of potential source data.

	 1.	 Open a new, blank workbook in Excel.

	 2.	 Click Data in the menu to switch to the Data ribbon.

	 3.	 Click Get Data. The Get Data popup menu will appear, as shown

in Figure 1-1.

Figure 1-1.  The Get Data popup menu

Chapter 1 Using Power Query to Discover and Load Data into Excel

5

	 4.	 Click From File.

	 5.	 Click From Workbook. The Import Data dialog will appear.

	 6.	 Click the file C:\DataMashupWithExcelSamples\

BrilliantBritishCars.xlsx. The Import Data dialog will look like the

one in Figure 1-2.

	 7.	 Click the Import button. The Navigator dialog will appear.

	 8.	 You will see that the BrilliantBritishCars.xlsx file appears on

the left of the Navigator dialog and that any workbooks, named

ranges, or data tables that it contains are also listed under the file.

	 9.	 Click the BaseData worksheet name that is on the left. The

contents of this workbook will appear in the data pane on the

right of the Navigator dialog. The Navigator dialog should look like

Figure 1-3.

Figure 1-2.  The Import Data dialog when loading data from an Excel workbook

Chapter 1 Using Power Query to Discover and Load Data into Excel

6

	 10.	 Click Load. The data will be loaded from the external Excel

workbook into a new worksheet inside the current workbook.

You will see the Excel window, like the one shown in Figure 1-4. The external data is

now an Excel table (named BaseData, as this was the name of the source data table). You

can see that the connection to the external workbook now appears on the right of the

Excel spreadsheet data in the new Queries & Connections pane. I will explain this new

element in a couple of pages once I have explained exactly why Power Query is such a

cool solution to data ingestion challenges.

Figure 1-3.  The Navigator dialog with data selected

Chapter 1 Using Power Query to Discover and Load Data into Excel

7

I imagine that loading this data took a few seconds at most. Yet you now have a

complete set of external data in Excel that is ready to be used for analysis and reporting.

However, for the moment, I would like to pause and explain exactly what you have seen

so far.

�Why Use Power Query?
What you have just done is to open up Excel to become the preferred analysis and MI/BI

(Management Information and Business Intelligence) tool when it comes to connecting

to the information held in dozens of external data sources. What you just saw was that

Excel can now connect to multiple sources of data and bring them into spreadsheets for

further analysis in a few clicks.

However, it is vital to understand that you have so far only scratched the surface of

Power Query and all that it can do to facilitate data ingestion. This is because viewing

and loading data are just the start. As well, you can use it to

•	 Import data from multiple different data sources

•	 Import multiple datasets from external data sources at the same time

Figure 1-4.  Data available in Excel

Chapter 1 Using Power Query to Discover and Load Data into Excel

8

•	 Join datasets from multiple different types of source data systems

•	 Filter data before it is loaded to ensure that you only import the exact

data that you need

•	 Cleanse data to remove anomalies or errors

•	 Transform the source data to make it easier to use

Not only that, but you can refresh the process and reload the source data at any

time to reimport the source data—and reapply all the data selection, cleansing, and

transformation that you prepared—in a single click. In other words, once you have

defined a data ingestion process, you never need to create it again, you simply run it

again to watch the latest version of the source data flow into an Excel spreadsheet. Of

course, you can go back to the data load routine at any time and tweak it either to correct

any errors or to add new sources or processing steps. And all this is carried out using the

tool with which you are already familiar—Excel—now that Power Query is tightly bound

into the fabric of Excel itself.

�The Queries & Connections Pane
The first really new aspect of using Power Query inside Excel is the Queries &

Connections pane. Put simply, this window displays all the Power Query connections

that you have made to external data sources. It is your point of entry into Power Query

data ingestion processes, and allows you to

•	 List all active connections

•	 Refresh the data delivered by a Power Query connection

•	 Display a sample of the source data

•	 Move to the destination worksheet where the data is imported

•	 Delete the connection

•	 Modify the connection and any aspect of the data transformation

process

•	 Manage connections

Chapter 1 Using Power Query to Discover and Load Data into Excel

9

As the Queries & Connections pane is your gateway to the world of Power Query,

it is worth familiarizing yourself with a couple of its key aspects from the start. As you

progress through this book, you will be using more and more of its possibilities to unlock

the immense capabilities of Power Query, so I will only attempt to demystify it now—the

detail will come later.

�Displaying the Queries & Connections Pane
To display (or hide) the Queries & Connections pane

	 1.	 Click Data in the menu to switch to the Data ribbon.

	 2.	 In the Data ribbon, click Queries & Connections. The Queries

& Connections pane will be displayed (or hidden if it is already

visible).

The main elements of the Queries & Connections pane are outlined in Figure 1-5.

�The Peek Window
The Queries & Connections pane lets you take a glimpse of the data that is returned by a

query. This can be extremely useful when you have added dozens of connections to an

Excel file and cannot remember which connection returns which dataset.

Figure 1-5.  The Queries & Connections pane

Chapter 1 Using Power Query to Discover and Load Data into Excel

10

To display the Peek window

	 1.	 Hover the mouse pointer over the query in the Queries &

Connections pane whose data you want to view. If you have

followed the previous examples in this chapter, it will be the query

named BaseData.

The Peek window will appear showing some of the data as well as the key properties

of the source data connection. You can see the Peek window explained in Figure 1-6.

�Peek Window Options
The key information that the Peek window makes available is outlined in Table 1-1.

Figure 1-6.  The Peek window

Chapter 1 Using Power Query to Discover and Load Data into Excel

11

�View in Worksheet
The Peek window lets you move directly to the imported data in the destination worksheet

(assuming that the data has not been padded into the Power Pivot data model).

To “jump” to the worksheet containing the data

	 1.	 Click the query in the Queries & Connections pane whose data

you want to view.

The worksheet containing the imported data will be activated.

Inversely, you can click inside a worksheet that contains the data output from a

query, and the query name will be highlighted in the Queries & Connections pane.

Note A nother (but slightly more complicated) way to activate the worksheet
containing the data loaded from the query is to hover the pointer over the query
in the Queries & Connections pane and then click View in Worksheet in the Peek
window.

Table 1-1.  The Peek Window

Element Description

Query or Connection Name The name of each query or connection to a data source

Data Preview A quick overview of a sample of the data

Column List The column output from a query

Refresh Date The last date that the data was refreshed

View in Worksheet Activate the worksheet containing the data output from the query

(if the data has been output this way)

Edit Modify the query in Power Query

Query Menu A subset of query modification options

Delete Remove the query from the workbook file

Chapter 1 Using Power Query to Discover and Load Data into Excel

12

�Deleting a Query
To complete this initial high-level overview of queries and connections using Power

Query, let’s see how to delete a connection that you have created:

	 1.	 Hover over the query in the Queries & Connections pane that you

want to delete. The Peek window will appear.

	 2.	 In the Peek window, click Delete. The status bar of the Peek window

will display a confirmation message as shown in Figure 1-7.

	 3.	 Click Delete. The connection will be deleted.

Note T his action does not delete the data that has been imported into a
worksheet, only the connection to the source data and any processing steps that
you have applied. If you want to remove the data, then simply delete the worksheet
as you would normally. Deleting a query does, however, prevent any future data
refresh.

�Understanding Data Load
What you have seen so far is an extremely rapid dash through a Power Query data load

scenario. In reality, this process can range from the blindingly simple (as you just saw)

to the more complex where you join, filter, and modify multiple datasets from different

sources (which you will discover in Chapters 6 through 12). However, loading data will

always be the first step in any data analysis scenario when you are using Power Query to

load data into Excel.

Figure 1-7.  Delete confirmation in the Peek window

Chapter 1 Using Power Query to Discover and Load Data into Excel

13

In this short example, you nonetheless saw many of the key elements of the data load

process. These included

•	 Accessing data that is available in any of the source formats that

Power Query can read

•	 Taking a first look at the data before loading it into Excel

What you did not see here is how Power Query can add an intermediate step to the

data load process and edit the source data in Power Query Editor. This aspect of data

manipulation—data mashup—is covered extensively in later chapters.

�The Navigator Dialog
One key aspect of the data load process is using the Navigator dialog correctly. You saw

this dialog in Figure 1-3. The Navigator window appears when connecting to nearly all

data sources. It allows you to

•	 Take a quick look at the available data tables in the source data

•	 Filter multiple data elements that are available in a single data source

•	 Look at the data held in individual tables in the source application

•	 Select one or more data tables to load into Excel

Note O ne of the really impressive aspects of Power Query (and the Navigator) is
that in most cases you do not need client software installed on your PC to access
the data. This means that you can access data in, for example, SQL Server or
Salesforce directly from Excel.

Depending on the data source to which you have connected, you might see only a

few data tables in the Navigator window, or hundreds of them. In any case, what you can

see are the structured datasets that Power Query can recognize and is confident that it

can import. Equally dependent on the data source is the level of complexity of what you

will see in the Navigator window. If you are looking at a database server, for instance,

then you may start out with a list of databases, and you may need to dig deeper into the

arborescence of the data by expanding databases to list the available data tables and

views. If you are connecting to an Excel file, you may only see a handful of tables of data.

Chapter 1 Using Power Query to Discover and Load Data into Excel

14

The more you work with Power Query, the more you will use the Navigator dialog.

It seems appropriate, therefore, to explain at this early juncture some of the tricks and

techniques that you can apply to make your life easier when delving into a plethora of

potential sources of data.

Let’s start by taking a closer look at the available options. I will use the Navigator

dialog that you first saw in Figure 1-3 when loading data from the Excel file

BrilliantBritishCars.xlsx. The available options are outlined in Figure 1-8.

The Navigator dialog is essentially in two parts:

•	 On the left: The hierarchy of available data sources. These can consist

of a single dataset or multiple datasets, possibly organized into one or

many folders.

•	 On the right: A preview of the data in the selected element.

The various Navigator dialog options are explained in the following sections.

Figure 1-8.  The Navigator dialog

Chapter 1 Using Power Query to Discover and Load Data into Excel

15

�Select Multiple Source Tables
Power Query lets you select and load more than one source data table from the same

connection at once. Let’s see an example of this.

	 1.	 In the Data ribbon, click Get Data ➤ From File ➤ From Workbook.

	 2.	 Navigate to the Excel file C:\DataMashupWithExcelSamples\

CarSales.xlsx and click Import.

	 3.	 In the Navigator dialog, check the Select multiple items check box.

This is shown in Figure 1-9.

This will cause a check box to appear to the left of each source data item (or table or

dataset if you prefer). You can then check the box for each source element that you want

to load as part of this query.

�Searching for Datasets
You will, inevitably, come across cases where the data source that you are connecting

to will contain hundreds of datasets. This is especially true for databases. Fortunately,

Power Query lets you filter the datasets that are displayed extremely easily.

Figure 1-9.  Selecting multiple source items

Chapter 1 Using Power Query to Discover and Load Data into Excel

16

	 1.	 In the Navigator dialog, click inside the Search box.

	 2.	 Enter a part of a dataset name that you want to isolate. In this

example, I have entered “li”.

	 3.	 The list of available datasets will be filtered to show only

those containing the text that you entered. You can see this in

Figure 1-10 for the Excel source file CarSalesDataForQueries.

xlsx (also in the directory C:\DataMashupWithExcelSamples).

To remove the filter, simply click the cross at the right of the Search box. Navigator

will clear the filter and display all the datasets in the data source.

Note Y ou must expand the hierarchy (or hierarchies) containing the items that
you want to filter datasets on before using the Navigator Search function.

Figure 1-10.  Dataset search in the Navigator dialog

Chapter 1 Using Power Query to Discover and Load Data into Excel

17

�Navigator Display Options
Clicking Display Options in the Navigator dialog will show a popup menu with two

options:

•	 Only selected items

•	 Enable data previews

You can see this in Figure 1-11.

�Only Selected Items

Selecting this option will prevent any datasets that you have not selected from appearing

in the data source pane.

�Enable Data Previews

Selecting this option will show a small subset of the data available in the selected dataset.

You could choose to disable data previews if the connection to the source data is slow.

�Refresh
If you need to, you can refresh either or both of the following:

•	 The source data

•	 The data preview

�Source Data Refresh

Clicking the preview button under the search bar will refresh the list of source data tables

displayed in the source data pane.

Figure 1-11.  Navigator display options

Chapter 1 Using Power Query to Discover and Load Data into Excel

18

�Data Preview Refresh

Clicking the preview button on the top right of the Navigator dialog will refresh the

preview data visible on the right for the selected table.

�Select Related Tables

Clicking the Select Related Tables button is only valid for database sources, such as

Microsoft SQL Server or Oracle. If the source database has been designed correctly to

include joins between tables, then this option will automatically select all tables that are

linked to any tables that you have already selected.

Note I n a database source, some tables can be related to other tables that are,
themselves, related to other tables. This hierarchy of connections is not discovered
in its entirety when you click Select Related Tables. In other words, you might have
to select several tables and click this button repeatedly to select all the tables that
you need.

This is the end of our whirlwind tour of the Navigator. However, you will see much,

much more of the Navigator window in the following four chapters as you learn how to

connect to a wide range of data sources.

�The Navigator Data Preview
The Navigator Data Preview pane (on the right) is, as its name implies, a preview of the

data in a data source. It provides

•	 A brief overview of the top few records in any of the datasets that

you want to look at. Given that the data you are previewing could

be hundreds of columns wide and hundreds of rows deep, there

could be scroll bars for the data table visible inside the Navigator

Data Preview. Remember, however, that you are not examining all

the available data and are only seeing a small sample of the available

records.

•	 A list of the available columns in the data table. These are shown at

the bottom of the Navigator Data Preview.

Chapter 1 Using Power Query to Discover and Load Data into Excel

19

Power Query can preview and load data from several different sources. Indeed

(as you can see from the list of possible data sources in the Get Data popup menu),

it can read most of the commonly available enterprise data sources as well as many,

many others. What is important to appreciate is that Power Query applies a common

interface to the art and science of loading data, whatever the source. So whether you are

examining a SQL Server or an Oracle database, an XML file or a text file, a web page or

a big data source, you will always be using a standardized approach to examining and

loading the data. This makes the Power Query data experience infinitely simpler—and

extremely reassuring. It means that you spend less time worrying about technical aspects

of connecting to data sources and that you are free to focus, instead, on the data itself.

Note T he Navigator Data Preview is a brilliant data discovery tool. Without having
to load any data, you can take a quick look at the data source and any data that
it contains that can (probably) be loaded by Power Query. You can then decide if
it is worth loading. This way you do not waste time on a data load that could be
superfluous to your needs.

�Modifying Data
Once you have one or more queries in Power Query that can connect to data sources

and bring the data into this environment, you can start thinking about the next step—

transforming the data so that it is ready for use. Depending on the number of data

sources that you are handling and the extent of any modifications that are required, this

could vary from the simple to the complex. To give a process some structure, I advise

that you try to break down any steps into the following main threads:

•	 Shape the dataset: This covers filtering out records to reduce the size

of the dataset, as well as removing any extraneous columns. It may

also involve adding columns that you create by splitting existing

columns, creating calculated columns, or even joining queries.

•	 Cleanse and modify the data: This is also known as data

transformation (the T in ETL). It encompasses the process of

converting text data to uppercase and lowercase, as well as (for

Chapter 1 Using Power Query to Discover and Load Data into Excel

20

instance) removing nonprinting characters. Rounding numbers and

extracting date parts from date data are also possible (among the

many dozens of other available transformations).

For the moment, however, it is only important to understand that Power Query can

do all of this if you need it to. Transforming data is explained in detail in Chapters 6

through 12.

�The Power Query Editor
In the previous example, you loaded data directly into Excel. In the course of this book,

you will also learn how to extend this approach with an additional step—because you

also have the option of loading data into the Power Query Editor before adding it to

the data model. This “detour” is the part of the process that allows you to cleanse and

transform the data before it is added to the data model. Of course, if your data is perfect,

then you can add it straight into the data model and start analyzing just as you did

previously. However, if your data needs any adjustment at all, then the Power Query

Editor will likely soon become a trusted tool. Consequently, it is probably worth reading

Chapters 1 through 5 that describe how to load data from a range of possible sources and

then Chapters 6 through 12 to shape, modify, and structure your data so that it becomes

a clear source of new and valuable insights.

�Data Sources
Now that you have seen how quickly and easily you can load data into Excel, it is time to

take a wider look at the types of data that Power Query can ingest and manipulate.

As the sheer wealth of possible data sources can seem overwhelming at first, Power

Query groups potential data sources into the following categories:

•	 File: Includes Excel files, CSV (comma-separated values) files, text

files, JSON files, and XML files. Power Query can even load entire

folders full of files.

•	 Database: A comprehensive collection of relational databases that

are currently in the workplace and in the cloud, including (among

others) MS Access, SQL Server, and Oracle. The full list of those

available when this book went to press is given in Chapter 3.

Chapter 1 Using Power Query to Discover and Load Data into Excel

21

•	 Azure: This option lets you see a wide range of data types that is

hosted in the Microsoft Cloud. This covers data formats from SQL

Server through to big data sources. You can see how a few of these are

used with Power Query in Chapter 4.

•	 Online services: These sources range from SharePoint lists to

Salesforce, Dynamics 365 to Facebook—and many, many others.

Some of these are examined in Chapter 4.

•	 Other: A considerable and ever-growing range of data sources, from

Hadoop to Microsoft Exchange. Some of these will be touched on in

the course of Chapters 2 through 5.

The list of possible data sources is changing all the time, and you need to be aware

that you have to look at the version of Excel that you are using if you want an exhaustive

list of all the available data sources that you can use. Indeed, I expect that more will have

been added by the time that you read this book.

You can also list the contents of folders on any available local disk, network share, or

even in the cloud and then leverage this to import several files at once. Similarly (if you

have the necessary permissions), you can list the databases and data available on the

database servers you connect to. This way, Power Query can provide not only the data

but also the metadata—or data about data—that can help you to take a quick look at

potential sources of data and only choose those that you really need.

Unfortunately, the sheer range of data sources from which Power Query can read

data is such that we do not have space in a few chapters to examine the minutiae of every

one individually. Consequently, we will take a rapid tour of some of the most frequently

used data sources in this and the next few chapters. Fortunately, most of the data sources

that Power Query can read are used in a similar way. This is because the Power Query

interface does a wonderful job of making the arcane connection details as unobtrusive

as possible. So even if you are faced with a data source that is not described in these

chapters, you will nonetheless see a variety of techniques that can be applied to virtually

any of the data sources that Power Query can connect to.

Note T he list of data sources that Power Query can access is growing all the
time. Consequently, when you read this book, you will probably find even more
sources than those described in this and the next four chapters.

Chapter 1 Using Power Query to Discover and Load Data into Excel

22

�Source Data Properties
Excel allows you to tweak a handful of options relating to the Power Query connection to

an external data source.

	 1.	 Click inside the table containing data inserted into a worksheet by

Power Query.

	 2.	 Click Properties in the Data ribbon. The External Data Properties

dialog will appear. You can see this in Figure 1-12.

These options are explained in Table 1-2.

Figure 1-12.  The External Data Properties dialog

Table 1-2.  External Data Properties Options

Element Description

Query Name The name of the query or connection

Include row numbers Adds an automatically increasing row number to the left of the data

Adjust column width Adjusts the width of each column to display the data fully

Preserve column sort/filter/

layout

Keeps filters and sorting from the source query and not from the

output in Excel

Preserve cell formatting Keeps formatting (if any) from the source query and not from the

output in Excel

Chapter 1 Using Power Query to Discover and Load Data into Excel

23

Note Y ou will only see the result of any changes that you make to these options
when the query is refreshed.

�Query Properties
Excel has always proposed a series of query options when connecting to external data

sources—even when older connection techniques were used. Fortunately, these options

are also available when using Power Query.

	 1.	 Click inside the table containing data inserted into a worksheet by

Power Query. I will use the initial query named BaseData that you

created earlier in this chapter using the file BrilliantBritishCars.

xlsx.

	 2.	 Click the small triangle at the bottom right of the Refresh All

button. The Refresh popup menu will appear, as shown in

Figure 1-13.

	 3.	 Click Connection Properties in the popup menu. You will see the

Query Properties dialog as shown in Figure 1-14.

Figure 1-13.  The Refresh popup menu

Chapter 1 Using Power Query to Discover and Load Data into Excel

24

These options are explained in Table 1-3.

Figure 1-14.  The Query Properties dialog

Table 1-3.  Query Properties Options

Element Description

Query name The name of the query or connection

Description Any comments that you wish to add

Enable background refresh Allows the refresh to take place while working in Excel

at the same time

Refresh every “N” minutes Schedules an automated refresh

Refresh data when opening the file Runs the query to refresh the data each time the Excel

file is opened

Refresh this connection on Refresh All Allows you to exclude a query from an overall refresh

Enable Fast Data Load Loads the data as fast as possible—even if this causes

Excel to appear to “hang”

Chapter 1 Using Power Query to Discover and Load Data into Excel

25

�Load Destinations
I mentioned at the start of this chapter that Power Query allows you a choice of load

destinations once you have finished preparing the source data. The default load option

is to place the output data directly in a new worksheet in the current Excel file. However

there are several variations on this theme that are available. They are

•	 Load into an Excel named table (the default)

•	 Load into a pivot table based on the source data

•	 Load into a pivot chart based on the source data

•	 Only create a connection to the data, but do not load it yet

On top of this, you have the choice whether you want to

•	 Create the table of data, pivot table, or pivot chart in the current

worksheet.

•	 Create the table of data, pivot table, or pivot chart in a new

worksheet.

•	 Optionally, add the data to the Power Pivot data model. Queries

added to the data model can be joined and extended separately to

provide a complete and powerful source of analytical data.

Note I t is perfectly possible to load data to both the data model and to a
worksheet table.

Assuming that you have connected to a data source and can view the required source

data in the Navigator (as shown in Figure 1-3):

	 1.	 Click the small triangle at the right of the Load button in the Home

menu. The popup menu will appear. You can see this in Figure 1-15.

Figure 1-15.  Load options

Chapter 1 Using Power Query to Discover and Load Data into Excel

26

	 2.	 Select Load To…. The Import Data dialog appears, as shown in

Figure 1-16.

	 3.	 Select the Table radio button.

	 4.	 Select New worksheet as the data destination.

	 5.	 Leave the Add this data to the Data Model check box unchecked.

	 6.	 Click OK.

The connection—and data load if you opted for this outcome—will be created

according to the options that you specified. If you followed the steps exactly as defined

earlier, then you should obtain a new worksheet containing the data from the data source.

Note S electing the Only Create Connection radio button prevents you from
choosing an output destination. This is useful when you want to prepare a data
load process, but might not yet be sure how and where to output the final data.

�Repurposing an Existing Connection
On some occasions, you may want only to set up a connection to source data, but not

actually import the data. As you saw in the previous section, choosing the option Only

Create Connection in the Import Data dialog allows you to do this.

Figure 1-16.  Load destination options

Chapter 1 Using Power Query to Discover and Load Data into Excel

27

There could be a variety of reasons for choosing this solution:

•	 You want to “pause” the work on a data transformation and load

process and come back to it later—without losing the work that you

have already carried out and without loading the data (which could

be, potentially, voluminous and time-consuming).

•	 This query will not be used to access data directly, but used as an

intermediate step in a more complex process. You will learn more

about this approach in Chapter 9.

•	 The data will be loaded into the Power Pivot data model and not used

directly in a table or Power Pivot table or chart.

Equally, it is worth knowing that if you delete a worksheet that contains the data

output from a query, then the source query will become a connection only and will not

load the data until you redefine an output destination.

It follows from this that you also need to know how to take a connection and apply a

data destination. Here is how:

	 1.	 In the Queries & Connections pane, hover over the connection

that you want to repurpose. The Peek window will appear.

	 2.	 Click the ellipses in the menu bar at the bottom of the Peek

window. The menu that is shown in Figure 1-17 will appear.

Figure 1-17.  Peek window options

Chapter 1 Using Power Query to Discover and Load Data into Excel

28

	 3.	 Select Load To… and choose the options that you require from the

Import Data dialog that you saw in Figure 1-16.

Note Y ou cannot simply redefine a new destination for an existing data load. You
have first to remove the current load destination (by deleting the Excel table or the
destination worksheet, e.g., or by removing the data table from the Power Pivot
data model) and then reapply a new destination.

�Load to Excel
Loading data into Excel is not only the default option, it is probably the preferred choice

of many users. There are a multitude of valid reasons for choosing this data destination:

•	 It is the simplest option.

•	 The data is instantly available and ready to use.

•	 You can apply the techniques and functions that you are used to

using directly in Excel to analyze the data.

You need to be aware, however, that this approach does have a few limitations:

•	 Large data loads will hit the 1,000,000 row limit in Excel.

•	 Large data loads can mean huge Excel file sizes.

In these latter cases, loading data into the Power Pivot data model is probably a wiser

choice, as the data will be compressed and can contain, potentially, many millions of

rows of data.

�Load to the Data Model
As this is fundamental to the practice of self-service BI using Excel and Power Query, you

really need to understand what this data model is and how it helps you to create valid

analyses.

The data model is a collection of one or more tables of data that are loaded into

Power Pivot and then joined together in a coherent fashion. The data can come via

Power Query, be obtained from existing Excel tables or worksheets, or be imported from

a variety of sources. There can only be a single data model per Excel file.

Chapter 1 Using Power Query to Discover and Load Data into Excel

29

Admittedly, you can place all your data in a single “flat” table in Excel and use that as

the basis for analytical output. However, it is highly likely that you will want to develop a

data model using Power Pivot if you intend to use datasets of any complexity. There are

occasions when building a good data model can take a while to get right, but there are

many valid justifications for spending the time required to build a coherent data model

using Power Pivot. The reasons for this investment include

•	 You can go way beyond the million-row limit of an Excel worksheet if

you are using the Excel data model in Power Pivot. Indeed, in Power

Pivot tables of tens of millions of rows are not unknown.

•	 A coherent data model makes understanding and visualizing your

data easier.

•	 A well-thought-out data model means less redundant information

stored in a single table when it can be referenced from another table

rather than repeated endlessly.

•	 Power Pivot saves space on disk and in memory because it uses a

highly efficient data compression algorithm to store the data in the

data model. This means that a workbook using a dataset will take up

considerably less space than storing data in Excel worksheets.

•	 Since a dataset is loaded entirely into the PC’s memory, calculations

are faster.

•	 A data model can be prepared for data output.

•	 A data model can contain certain calculations (some of which can get

fairly complex) that are designed to ensure that the correct results are

returned when slicing and filtering data in Excel.

•	 A data model can contain hierarchies and KPIs.

•	 A data model can be used to create complex pivot tables in Excel.

•	 A data model can be the basis, or the proof of concept, for a fully

fledged SSAS (SQL Server Analysis Services) tabular data warehouse.

•	 A data model can avoid you having to implement complex

VLOOKUP( ) functions in Excel.

Chapter 1 Using Power Query to Discover and Load Data into Excel

30

As this is not a book on Power Pivot, I will not be describing how to create and use

Power Pivot data models to carry out data analysis. I will merely point out that you can

specify that the Power Pivot data model can be the destination for data imported using

Power Query.

There are many excellent books and web resources on Power Pivot and the Power

Pivot data model, and I encourage you to look at these for detailed explanations on using

this amazing tool. If you want a short introduction, you can find this in my book High

Impact Data Visualization with Power View, Power Map, and Power BI (2nd Edition

Apress 2016.)

�Conclusion
In this chapter, you have seen how Power Query can be used to connect to any of a wide

range of data sources. You have seen that as long as you know what kind of data you want

to load—and that Power Query has an available connector to this data—you can preview

and load the data into either an Excel worksheet or the built-in Power Pivot data model.

Now it is time to delve deeper into the details of some of the various data sources

that you can use with Power Query. The next chapter will start on your journey by

introducing many of the file-based data types that you can use as sources of your data.

Chapter 1 Using Power Query to Discover and Load Data into Excel

31
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_2

CHAPTER 2

Discovering and Loading
File-Based Data with
Power Query
Sending files across networks and over the Internet or via email has become second

nature to most of us. As long as the files that you have obtained conform to some of the

widely recognized standards currently in use (of which you will learn more later), you

should have little difficulty loading them into Power Query.

As the first part of your journey through the data mashup process, this chapter will

show you how to find and load data from a variety of file-based sources. These kinds of

data are typically those that you can either locate on a shared network drive, download

from the Internet, receive as an email attachment, or copy to your computer’s local

drive. The files that are used in the examples in this chapter are available on the Apress

website. If you have followed the download instructions in Appendix A, then these files

will be in the C:\DataMashupWithExcelSamples folder.

�File Sources
In this chapter we will be looking at how to import file-based data from

•	 CSV files

•	 Text files

•	 XML files

•	 Excel files

•	 Access databases

https://doi.org/10.1007/978-1-4842-6018-0_2#ESM

32

The file sources that Power Query can currently read and from which it can load data

are given in Table 2-1.

More advanced techniques (such as importing the contents of entire folders of text

or Excel files or importing complex XML files and JSON files) are described in Chapter 10.

I prefer to handle these separately as they require more advanced knowledge of data

transformation techniques—and you need to learn these first.

Note  I realize that Power Query considers MS Access to be a database and
not a “file” data type. While I completely agree with this classification, I prefer
nonetheless to treat Access as if it were a file-based data source, given that all the
data resides in a single file that can be copied and emailed, and not in a database
on a distant server. For this reason, we will look at MS Access in this chapter, and
not the next one that deals with corporate data sources.

Table 2-1.  File Sources

File Source Comments

Excel Allows you to read Microsoft Excel files (versions 97 to 2019)

and load worksheets, named ranges, and tables

CSV Lets you load text files that conform to the CSV (comma-

separated values) format

XML Allows you to load data from XML files

Text Lets you load text files using a variety of column separators

Folder Lets you load the information about all the files in a folder

SharePoint folder Allows you to list the files in a SharePoint folder

Access database Lets you connect to a Microsoft Access file on your network

and load queries and tables

JSON Helps you to load data from JSON files

Chapter 2 Discovering and Loading File-Based Data with Power Query

33

�Loading Data from Files
It is time to start looking at the heavy-lifting aspect of Power Query and how you can use

it to load data from a variety of different sources. I will begin on the bunny slopes (or

“nursery” slopes as we say in the UK) with a simple example of loading data from a text

file. Then, given the plethora of available data sources, and to give the process a clearer

structure, we will load data from several of the ubiquitous file-based data sources that

are found in most workplaces. These data sources are the basis of the data that you will

learn to tweak and “mash up” in Chapters 6 through 12.

�CSV Files
The scenario is as follows: you have been given a CSV file containing some useful

information that you need to load into Excel for further analysis. You now want to use

Power Query to look at the data and consider what (if anything) needs to be done to

make it usable. On this occasion you have decided to load the data into Power Query

first—and load the data into Excel once you have made any necessary modifications to

the source data structure.

First, you need an idea of the data that you want to load. If you open the source file

C:\DataMashupWithExcelSamples\Countries.csv with a text editor, such as Notepad (by

right-clicking the file in the Windows Explorer and selecting Open With ➤ Notepad), you

can view its contents. This is what you can see in Figure 2-1.

Figure 2-1.  The contents of the Countries.csv file

Chapter 2 Discovering and Loading File-Based Data with Power Query

34

The following steps explain what you have to do to load the contents of this file into

Power Query:

	 1.	 In Excel click Data.

	 2.	 Click the Get Data button.

	 3.	 Click From Text/CSV. The Import Data dialog will appear.

	 4.	 Navigate to the folder containing the file that you want to load and

select it (C:\DataMashupWithExcelSamples\Countries.csv, in this

example).

	 5.	 Click Import. A dialog will display the initial contents of the file, as

shown in Figure 2-2.

	 6.	 Click the Transform Data button. The Power Query window

appears; it contains a sample of the contents of the CSV file—or

possibly the entire file if it is not too large. You can see this in

Figure 2-3.

Figure 2-2.  The Power Query file dialog

Chapter 2 Discovering and Loading File-Based Data with Power Query

35

	 7.	 Click the Close & Load button in the Power Query window (you

can see this at the top left of Figure 2-3). The Power Query Editor

will close and return to Excel. The source data will be loaded into

a new worksheet.

Tip  In step 7, make sure that you click the top part of the Close & Load button.
Otherwise, you will see a popup menu appear containing a couple of options. If you
do see the popup menu, just click Close & Load.

And that, for the moment, is that. You have loaded the data from the source file into

Excel in a matter of a few clicks, and it is ready for further analysis. In later chapters, you

will learn how to shape this data. For the moment, however, let’s continue looking at

some other file-based data sources.

Figure 2-3.  The Power Query window with the contents of a CSV file loaded

Chapter 2 Discovering and Loading File-Based Data with Power Query

36

Note  If after step 7 the data does not appear in a new worksheet, then carry out
the process again, only this time click the popup menu on the Close & Load button
and select Load To—and in the dialog (that you saw in Figure 1-16), select the
New worksheet radio button.

�What Is a CSV File?

Before we move on to other file types, there are a few comments I need to make about

CSV files. There is a technical specification of what a “true” CSV file is, but I won’t bore

you with that. What’s more, many programs that generate CSV files do not always follow

the definition exactly. What matters is that Power Query can handle text files that

•	 Normally have a .csv extension (it uses this by default to apply the

right kind of processing). It can, of course, accept any extension that

you specify.

•	 Use a comma to separate the elements in a row. This, too, is a default

that can be overridden by selecting a delimiter from those in the

dialog shown in Figure 2-2.

•	 End with a line feed, carriage return, or line feed/carriage return.

•	 Can, optionally, contain double quotes to encapsulate fields. These will

be stripped out as part of the data load process. If there are double

quotes, they do not have to appear for every field nor even for every

record in a field that can have occasionally inconsistent double quotes.

•	 Can contain “irregular” records, that is, rows that do not have every

element found in a standard record. However, the first row (whether

or not it contains titles) must cover every element found in all the

remaining records in the list. Put simply, any other record can be

shorter than the first one but cannot be longer.

•	 Do not contain anything other than the data itself. If the file contains

header rows or footer rows that are not part of the data, then

Power Query cannot load the dataset without further work. There

are workarounds to this all-too-frequent problem; one is given in

Chapter 8.

Chapter 2 Discovering and Loading File-Based Data with Power Query

37

�Text Files
If you followed the process for loading a CSV file in the previous section, then you will

find that loading a text file is virtually identical. This is not surprising. Both are text-based

files and both should contain a single list of data. The following are the core differences:

•	 A text file can have something other than a comma to separate the

elements in a list. You can specify the delimiter when defining the

load step.

•	 A text file should normally have the extension .txt (though this, too,

can be overridden).

•	 A text file must be perfectly formed; that is, every record (row) must

have the same number of elements as every other record.

•	 A text file, too, must not contain anything other than the dataset if you

want a flawless data load the first time.

•	 If a text file encounters difficulties, it should import the data as

a single column that you can then try and split up into multiple

columns, as described in Chapter 8.

Here, then, is how to load a text file into Power Query:

	 1.	 Open a new, blank Excel file.

	 2.	 In the Data ribbon, click From Text/CSV. The Import dialog will be

displayed.

	 3.	 Navigate to the folder containing the file and select the file (C:\

DataMashupWithExcelSamples\CountryList.txt, in this example).

	 4.	 Click Import. A dialog will display the initial contents of the file

(this dialog is essentially identical to the one that you saw for CSV

files in Figure 2-2.). You can, of course, double-click the file name

rather than click Open.

	 5.	 Click the Cancel button (because after a quick look at the contents

of the file, you have decided that you do not really need it).

Chapter 2 Discovering and Loading File-Based Data with Power Query

38

Where Power Query is really clever is that it can make a very educated guess as to

how the text file is structured; that is, it can nearly always guess the field separator (the

character that isolates each element in a list from the other elements). And so not only

will it break the list into columns, but it will also avoid importing the column separator.

If it does not guess correctly, then don’t despair. You will learn how to correct this in

Chapter 8.

Looking at the contents of a file and then deciding not to use it is part and parcel of

the data discovery process that you will find yourself using when you work with Power

Query. The point of this exercise is to show you how easy it is to glance inside potential

data sources and then decide whether to import them into the data model or not.

Moreover, it can be easier to see the first few rows of large text or CSV files directly in the

Load dialog of Power Query than it is to open the whole file in a text editor.

Tip  At the risk of stating the obvious, you can press Enter to accept a default
choice in a dialog and press Esc to cancel out of the dialog.

�Text and CSV Options
You can see in Figure 2-3 that there are few options available that you can tweak when

loading text or CSV files. Most of the time Power Query will guess the correct settings

for you. However, there could be times when you will need to adjust these parameters

slightly. The potential options that you can modify are

•	 File Origin

•	 Delimiter

•	 Data Type Detection

�File Origin

This option defines the character encoding in which the file is stored. Different character

sets can handle different ranges of characters, such as accents and other diacritics.

Normally this information is correctly interpreted by Power Query, and you should only

need to select a different character set (file origin) on very rare occasions.

Chapter 2 Discovering and Loading File-Based Data with Power Query

39

�Delimiter

Power Query will try and guess the special character that is used in a text or CSV file to

separate the “columns” of data. Should you wish to override the chosen delimiter, you

have the choice of

•	 Colon

•	 Comma

•	 Equals sign

•	 Semicolon

•	 Space

•	 Tab character

You can also decide to enter a custom delimiter such as the pipe (|) character or even

specify that every field has a fixed width. Choosing either of these options will display

another entry field where you can type in the required delimiter.

�Data Type Detection

Power Query will make an educated guess at the data encoding and data type that are

used in a text or CSV file. By default, to save time, it will only read the first 200 records.

However, you can choose from any of the following three options:

•	 Read the first 200 rows

•	 Read the entire file

•	 No data type detection

Note  Be warned that reading a large file in its entirety can take quite a while.
However, without accurate data type detection, you risk seeing badly formed
columns in the output data.

Chapter 2 Discovering and Loading File-Based Data with Power Query

40

�Fixed-Width Text Files
Another form of text file that you might occasionally encounter is a fixed-width file.

This kind of source data ensures that each column contains exactly the same number of

characters. An example of what this can look like is shown in Figure 2-4.

To load data like this

	 1.	 In the Data menu, click Get Data ➤ From File ➤ From

Text/CSV. You will see something like Figure 2-5.

Figure 2-4.  Fixed-width text source data

Figure 2-5.  The file data connectors in Power Query

Chapter 2 Discovering and Loading File-Based Data with Power Query

41

	 2.	 Select the file Countries.prn from the folder C:\

DataMashupWithExcelSamples.

	 3.	 Click Open. The dialog displayed in Figure 2-6 will appear.

	 4.	 Click Load. The source data will be loaded into a new worksheet.

You can see from Figure 2-6 that Power Query gives you a certain amount of

information about fixed-width files. Specifically it calculates the length of each column

and provides the required column lengths under the delimiter popup. You can alter this,

but hopefully you will never need to.

As was the case with text and CSV files, you can force Power Query to sample the

entire source file if you consider this necessary by selecting Based on entire dataset from

the Data Type Detection popup menu.

�Simple XML Files
XML, or Extensible Markup Language, is a standard means of sending data between IT

systems. Consequently, you likely will need to load an XML file one day. Although an

XML file is just text, it is text that has been formatted in a very specific way, as you can

see if you ever open an XML file in a text editor such as Notepad. Do the following to load

an XML file:

Figure 2-6.  The fixed-width text file import dialog

Chapter 2 Discovering and Loading File-Based Data with Power Query

42

	 1.	 In the Data ribbon, click the Get Data button, and then click From

File and From XML. The Import Data dialog will appear.

	 2.	 Navigate to the folder containing the file and select the file

(C:\DataMashupWithExcelSamples\ColoursTable.xml, in this

example).

	 3.	 Click Import. The Navigator dialog will open.

	 4.	 Click the Colours dataset in the left-hand pane of the Navigator

dialog. The contents of this part of the XML file will be displayed

on the right of the Navigator dialog, as shown in Figure 2-7.

	 5.	 Click the Transform Data button. The Power Query Data window

will display the contents of the XML file.

	 6.	 Click the Close & Load button in the Power Query Data window.

The list of colors will be loaded into a new worksheet.

Figure 2-7.  The Navigator dialog before loading an XML file

Chapter 2 Discovering and Loading File-Based Data with Power Query

43

The actual internal format of an XML file can get extremely complex. Sometimes an

XML file will contain only one dataset; sometimes it will contain many separate datasets.

On other occasions, it will contain one dataset whose records contain nested levels of

data that you need to handle by expanding a hierarchy of elements. You will see how the

Navigator dialog handles nested hierarchies of XML data in Chapter 10—once you have

learned some of the required data transformation techniques.

Note  Certain types of data source allow you to load multiple sets of data
simultaneously. XML files (unlike CSV and text files) can contain multiple
independent datasets. You can load several datasets simultaneously in the Navigator
window if you first select the Select multiple items check box and then select the
check box to the left of each dataset that you want to load from the XML file.

�Excel Files
You are probably already a major Excel user and have many, many spreadsheets full of

data that you want to rationalize and use for analysis and presentation in Power Query.

Moreover, you saw how to load a single worksheet from an Excel file in the previous

chapter. So, let’s see how to load a couple of worksheets at once from an Excel file this

time. This exercise will allow you to appreciate the whole process in detail from start to

finish.

	 1.	 In the Excel Data ribbon, click Get Data ➤ From File ➤ From

Workbook. The Import Data dialog will appear.

	 2.	 Navigate to the directory containing the file that you want to look

at (C:\DataMashupWithExcelSamples, in this example).

	 3.	 Select the source file (InvoicesAndInvoiceLines.xlsx, in this

example) and click Import. The Navigator dialog will appear,

showing the worksheets, tables, and ranges in the workbook file.

	 4.	 Click one of the datasets listed on the left of the Navigator dialog.

The top few rows of the selected spreadsheet will appear on the

right of the dialog to show you what the data in the chosen dataset

looks like.

Chapter 2 Discovering and Loading File-Based Data with Power Query

44

	 5.	 Ensure the Select multiple items check box is selected.

	 6.	 Click the check boxes to the left of the Invoices and InvoiceLines

datasets on the left. The Navigator dialog will look like the one

shown in Figure 2-8.

	 7.	 Click the popup arrow at the right of the Load button.

	 8.	 Select Load To. The Processing Queries dialog will appear, briefly.

You can see this in Figure 2-9.

Figure 2-8.  The Navigator dialog before loading data from an Excel workbook

Chapter 2 Discovering and Loading File-Based Data with Power Query

45

	 9.	 This Import Data dialog will now appear. Ensure that Add this

data to the Data Model is unchecked and leave the Table and New

worksheet radio buttons selected. You can see how this looks in

Figure 2-10.

	 10.	 Click OK. The selected source datasets will be loaded into

separate Excel worksheets.

Figure 2-9.  The Processing Queries dialog

Figure 2-10.  The Import Data dialog

Chapter 2 Discovering and Loading File-Based Data with Power Query

46

Note  Certain types of data source allow you to load multiple sets of data
simultaneously. XML files (unlike CSV and text files) can contain multiple
independent datasets. You can load several datasets simultaneously by selecting
the check box to the left of each dataset that you want to load from the XML file.

As you can see from this simple example, having Power Query read Excel data is

really not difficult. You could have edited this data in Power Query Editor before loading

it, but as the data seemed clean and ready to use, I preferred to load it straight into Excel

(or rather the Excel/Power Pivot data model). As well, you saw that Power Query can

load multiple datasets at the same time from a single data source. However, you might

still be wondering about a couple of things that you saw during this process, so here are

some anticipatory comments:

The Navigator dialog displays

•	 Worksheets (Invoices and InvoiceLines like in Figure 2-8)

•	 Named ranges

•	 Named tables

Each of these elements is represented by a different icon in the Navigator dialog.

Sometimes these can, in effect, be duplicate references to the same data, so you should

really use the most precise data source that you can. For instance, I advise using a named

table or a range name rather than a worksheet source, as the latter could easily end up

containing “noise” data (i.e., data from outside the rows and columns that interest you),

which would make the load process more complex than it really needs to be—or even

cause it to fail. Indeed, unless a worksheet is prepared and structured in a simple tabular

format, ready for loading into Power Query, you could end up with superfluous data in

your data model.

However, the really cool thing is that you can load as many worksheets, tables, or

ranges as you want at the same time from a single Excel workbook. You do not need to

load each source dataset individually.

Chapter 2 Discovering and Loading File-Based Data with Power Query

47

Note  Power Query will list and use data connections to external data sources
(such as SQL Server, Oracle, or SQL Server Analysis Services) in a source Excel
workbook if the data connection is active and has returned data to the workbook.
Once a link to Power Query has been established, you can delete the data
table itself in the source Excel workbook—and still load the data over the data
connection in the source workbook into Power Query.

Power Query will not take into account any data filters on an Excel data table, but will

load all the data that is in the source table. Consequently, you will have to reapply any

filters (of which you’ll learn more in Chapter 6) in Power Query if you want to subset the

source data.

There are a couple of important points that you need to be aware of at this juncture:

	 1.	 Multiple worksheets, tables, or named ranges can all be imported

from the same workbook (i.e., Excel file) in a single load

operation. However, you need to define a separate load operation

for each individual Excel file.

	 2.	 It is also possible to load multiple identically structured Excel files

simultaneously using Power Query. This is explained in Chapter 10.

�Why Use Power Query to Connect to Excel
At this juncture, you might be wondering why you could possibly want to use Power

Query to load data from Excel when you can copy and paste from other Excel worksheets

or simply link cells across workbooks.

This is a perfectly good question. However, there are several perfectly valid reasons

for taking a “detour” via Power Query, even when loading Excel data:

	 1.	 The data cleansing and modification options that are available in

Power Query are considerably easier than comparable operations

in Excel.

	 2.	 Filtering source data (and only loading a subset of the data) is

unbelievably easy in Power Query.

Chapter 2 Discovering and Loading File-Based Data with Power Query

48

	 3.	 Power Query adapts to fewer—or more—records in the source

data automatically.

	 4.	 Refreshing the source data is a simple on-click operation.

	 5.	 Any changes to the source data can be made available only when

you want the data refreshed.

�From Table/Range
Sometimes you may inherit an Excel workbook that already contains the data that

you need (possibly the result of a connection to external data created using an

older technology). It may be that you need to modify and cleanse this data using

Power Query—even if the source is already in the same file as you want to place the

restructured output. This, too, is perfectly possible.

	 1.	 Open the Excel file Chapter02Sample1.xlsx. This is in the folder

C:\DataMashupWithExcelSamples.

	 2.	 Select a cell inside the table that you want to be the source of the

data for modification in Power Query. In this example, you need

to make sure that you are in the SourceData tab.

	 3.	 In the Excel Data ribbon, click From Table/Range. The Power

Query Editor will open.

	 4.	 Click inside the Query Settings pane on the query name and enter

a new name for this data source.

	 5.	 Carry out any modifications that you require to the data in the

Power Query Editor (you will learn these techniques in Chapters 6

through 12).

	 6.	 Click Close & Load. The transformed data will be loaded into a

new worksheet—with a new name.

Note  If you did not click inside an existing table before clicking the From Table/
Range button, you will receive a prompt asking you to select the source data.

Chapter 2 Discovering and Loading File-Based Data with Power Query

49

�Microsoft Access Databases
Another widely used data repository that proliferates in many corporations today is

Microsoft Access. It is a powerful desktop relational database and can contain hundreds

of tables, each containing millions of records. So we need to see how to load data from

this particular source. Moreover, Power Query can be particularly useful when handling

Access data because it allows you to see the contents of Access databases without even

having to install Access itself.

	 1.	 In the Data ribbon, click Get Data ➤ From Database ➤ From

Microsoft Access Database.

	 2.	 Navigate to the MS Access database containing the data

that you want to load (C:\DataMashupWithExcelSamples\

ClientsDatabase.accdb, in this example).

	 3.	 Select the Access file and click Import. The Navigator dialog

appears; it lists all the tables and queries in the Access database.

	 4.	 Select the ClientList dataset. This displays the contents of the

table, as you can see in Figure 2-11.

Chapter 2 Discovering and Loading File-Based Data with Power Query

50

	 5.	 Click Load. The source data from Access is loaded into a new

worksheet.

Note  If you wish to import several Access tables or queries simultaneously, then
simply ensure that the Select multiple items check box is selected. This will enable
you to select multiple source data tables or views from the Access database.

If you look closely at the left of the Navigator dialog in Figure 2-11, you can see that it

displays two different icons for Access objects:

•	 A table icon for Access data tables

•	 An icon representing two small windows for Access queries

Figure 2-11.  The Navigator dialog before loading data from an Access database

Chapter 2 Discovering and Loading File-Based Data with Power Query

51

This can help you to understand the type of data that you are looking at inside the

Access database.

Note  Power Query cannot see linked tables in Access, only imported tables
or tables that are actually in the Access database. It can, however, read queries
overlaid upon native, linked, or imported data.

�JSON Files
JSON files are, like XML, a file format that allows users (and computers) to send complex

data structures between systems. Generally, JSON files require a little tweaking for them

to be loaded in a state that is usable by Power Query. So we will be looking at how to

load and prepare JSON files in Chapter 9, once you have assimilated the necessary data

transformation techniques in Chapters 6 through 8.

�Conclusion
In this chapter, you have seen how this powerful addition to Excel, Power Query, can

help you find and load data from a variety of file-based data sources. These sources can

be Access, Excel, CSV, XML, or text/CSV files.

You have seen that Power Query will let you see a sample of the contents of the data

sources that it can read without needing any other application. This makes it a superb

tool for peeking into data sources and deciding if a file actually contains the data that you

need. Indeed, Power Query’s Navigator can help you filter multiple datasets in Excel or

XML files or Access databases, preview each dataset, and only select the ones that you

want to load. Of course, it can also load dozens of datasets at once if they all are stored in

the same source.

This chapter is not a complete overview of how to load file-based sources. So if you

need to load complex XML files or JSON files or need to understand how to load the

contents of entire folders—or all the worksheets in an Excel file, for instance—then you

can skip straight to Chapter 9 to learn these techniques.

However, file-based data sources are only a small part of the picture. Power Query

can also load data from a wide range of relational databases and data warehouses. We

will take a look at some of these in the next chapter.

Chapter 2 Discovering and Loading File-Based Data with Power Query

53
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_3

CHAPTER 3

Loading Data from
Databases and Data
Warehouses
Much of the world’s corporate data currently resides in relational databases, data

warehouses, and data warehouse appliances either on-premises or in the cloud.

Excel—via Power Query—can connect to many of the world’s leading commercial

and open source databases and data warehouses. This chapter will show you how to

extract data from several of these data sources to drive your Excel-based analytics using

Power Query. Indeed, you will discover that once you have learned how to connect to

one or two databases, you have learned how to use nearly all of them, thanks to the

standardized interface and approach that Power Query brings to data extraction.

You need to be aware, however, that the examples in this chapter use sample data that

is not available on the Apress website. In this chapter, I will let you use your own data or

use the sample data that can often be installed with the source databases themselves.

Note  It may be stating the obvious, but connecting to a database means that
the database must be installed and running correctly and you already have access
to it. Indeed, you may also need specific client software installed on the PC that
is running Power Query. This chapter will not explain how to install or use any of
the databases (or the client software) that are referenced. For this, you will have
to consult the relevant database documentation. Not only that, but many of the
data sources outlined in this chapter are only available if you have a Pro version or
Enterprise Excel subscription.

https://doi.org/10.1007/978-1-4842-6018-0_3#ESM

54

�Relational Databases
Being able to access the data stored in relational databases is essential for much of

today’s business intelligence. As enterprise-grade relational databases still hold much of

the world’s data, you really need to know how to tap into the vast mines of information

that they contain. The bad news is that there are many, many databases out there, each

with its own intricacies and quirks. The good news is that once you have learned to load

data from one of them, you can reasonably expect to be able to use any of them.

In the real world, connecting to corporate data could require you to have a logon

name and usually a password that will let you connect (unless the database can

recognize your Windows login or a single sign-on solution has been implemented). I

imagine that you will also require permissions to read the tables and views that contain

the data. So the techniques described in this chapter are probably the easy bit. The hard

part is convincing the guardians of corporate data that you actually need the data and

you should be allowed to see it.

The databases that Power Query can currently connect to, and can preview and load

data from, are given in Table 3-1.

Table 3-1.  Database Sources

Database Comments

SQL Server database Lets you connect to a Microsoft SQL Server on-premises database

(on-premises, in a hosted environment, or in a virtual machine in the

cloud) and import records from all the data tables and views that you are

authorized to access

Access database Lets you connect to a Microsoft Access file on your network and load

queries and tables (which we explored in the previous chapter)

SQL Server Analysis

Services database

Lets you connect to a SQL Server Analysis Services (SSAS) data

warehouse. This can be either an online analytical processing (OLAP)

cube or an in-memory tabular data warehouse

Oracle database Lets you connect to an Oracle database and import records from all the

data tables and views that you are authorized to access. This will likely

require client software to be installed

(continued)

Chapter 3 Loading Data from Databases and Data Warehouses

55

Database Comments

IBM DB2 database Lets you connect to an IBM DB2 database and import records from all

the data tables and views that you are authorized to access. This will

likely require additional software to be installed

MySQL database Lets you connect to a MySQL database and import records from all the

data tables and views that you are authorized to access

PostgreSQL database Lets you connect to a PostgreSQL database and import records from all

the data tables and views that you are authorized to access. This will

likely require additional software to be installed

Sybase database Lets you connect to a Sybase database and import records from all the

data tables and views that you are authorized to access

Teradata database Lets you connect to a Teradata database and import records from all the

data tables and views that you are authorized to access. This will likely

require additional software to be installed

SAP HANA database Lets you connect to a SAP HANA in-memory database and import

records from all the objects that you have permission to access. This will

likely require additional software to be installed

Table 3-1.  (continued)

These are the database connectors that are currently available for Power Query to

connect to. As the list of database and data warehouse sources that you can connect to

from Power Query continues to evolve, this list could likely be extended to include new

items by the time that you read this book.

Note  Although Power Query classifies Microsoft Access as a relational database,
I prefer to handle it as a file-based source. For this reason, MS Access data was
discussed in the previous chapter.

As well as connections for specific databases, Power Query contains generic

connectors that can help you to read data from databases that are not specifically in the

list of available databases. These generic connectors are explained in Table 3-2.

Chapter 3 Loading Data from Databases and Data Warehouses

56

Be warned that these generic connectors will not work with any database. However,

they should work with a database for which you have procured, installed, and configured

a valid ODBC or OLE DB driver. These connection types are explained in Chapter 5.

�SQL Server
Here I will use the Microsoft enterprise-level relational database—SQL Server—as

an example to show you how to load data from a database into Excel using Power

Query. The first advantage of this setup is that you probably do not need to install any

software to enable access to SQL Server. A second advantage is that the techniques are

pretty similar to those used and applied by Oracle, DB2, and the other databases to

which Power Query can connect. Furthermore, you can load multiple tables or views

from a database at once. To see this in action (on your SQL Server database), take the

following steps:

	 1.	 Open a new Excel Workbook.

	 2.	 In the Data ribbon, click Get Data ➤ From Database ➤ From SQL

Server Database. The SQL Server database dialog will appear.

	 3.	 Enter the server name in the Server text box. This will be the name

of your SQL Server or one of the SQL Server resources used by

your organization. It may even be a local version of SQL Server

that you have installed on your PC.

	 4.	 Enter the database name. The dialog will look like Figure 3-1

(but with your server and database names, of course).

Table 3-2.  Generic Database Access

Source Comments

ODBC data source Lets you connect over Open Database Connectivity to a database or data

source

OLE DB data source Lets you connect over Object Linking and Embedding, Database to a

database or data source

Chapter 3 Loading Data from Databases and Data Warehouses

57

	 5.	 Click OK. Power Query will connect to the server and display

the Navigator dialog containing all the tables and views in the

database that you have permission to see on the server you

selected.

	 6.	 Ensure the Select multiple items check box is checked.

	 7.	 Click the check boxes for the tables that you want to load. The data

for the most recently selected table appears on the right of the

Navigator dialog, as shown in Figure 3-2, where the Stock table is

selected.

Figure 3-1.  The Microsoft SQL Server database dialog

Chapter 3 Loading Data from Databases and Data Warehouses

58

	 8.	 Click Load.

	 9.	 While the data is being loaded, Power Query will display the

Queries & Connections pane and show the load progress for each

selected table. You can see this in Figure 3-3.

Figure 3-2.  The Navigator dialog when selecting multiple items

Chapter 3 Loading Data from Databases and Data Warehouses

59

	 10.	 Once the load is complete, the Queries & Connections pane will

display the final row counts for each source table that has been

loaded into the data model.

Tip  When selecting multiple tables or views, you will only ever see the contents
of a single data source in the Navigator dialog. However, you can preview the
contents of any of the selected data sources (or even any that are not selected)
simply by clicking the table or view name. This will not affect the choice of selected
tables and views that you want to load using Power Query.

Since this is very similar to the way in which you loaded data from Access in the

previous chapter, I imagine that you are getting the hang of how to use database sources

by now. Once again the Navigator dialog is a simple and efficient way to select the

datasets that you want to load into Excel.

Figure 3-3.  The Load dialog displaying data load progress

Chapter 3 Loading Data from Databases and Data Warehouses

60

Note  You can enter the server IP address instead of the server name if you
prefer. If there are several SQL Server instances on the same server, you will need
to add a backslash and the instance name. This kind of detailed information can be
obtained from corporate database administrators.

�Automatically Loading Related Tables
Relational databases are nearly always intricate structures composed of many

interdependent tables. Indeed, you will frequently need to load several tables to obtain

all the data that you need.

Knowing which tables to select is not always easy. Power Query tries to help you by

automatically detecting the links that exist in the source database between tables; this

way, you can rapidly isolate the collections of tables that have been designed to work

together.

Do the following to see a related group of tables:

	 1.	 Connect to the source database as described in the previous

section.

	 2.	 In the Navigator dialog, click a table that contains data that

you need.

	 3.	 Click the “Select related tables” button.

Any tables in the database that are linked to the tables that you selected in the

Navigator dialog are selected. You can deselect any tables that you do not want, of

course. More importantly, you can click the names of the selected tables to see their

contents.

Note  Sometimes you have to select several tables in turn and click “Select
related tables” to ensure that Power Query will select all the tables that are
necessary to underpin your analysis.

Chapter 3 Loading Data from Databases and Data Warehouses

61

�Database Options
The world of relational databases is—fortunately or unfortunately—a little more complex

than the world of files or MS Access. Consequently, there are a few comments to make

about using databases as a data source—specifically, how to connect to them.

First, let’s cover the initial connection to the server. The options are explained

in Table 3-3.

These options probably require a little more explanation. So let’s look at each

one in turn.

�Server Connection

It is fundamental that you know the exact connection string for the database that you

want to connect to. This could be the following:

•	 The database server name.

•	 The database server name, a backslash, and an instance name (if this

physical or virtual server contains several SQL Server instances).

•	 The database server IP address.

•	 The database server IP address, a backslash, and an instance name (if

there is one).

Table 3-3.  Database Connection Options

Option Comments

Server You cannot browse to find the server, and consequently you need to type or

paste the server name. If the server has an instance name (a concept that I

explain later), you need to enter the server and the instance. Your IT department

will be able to supply this if you are working in a corporate environment

Database If you know the database, then you can enter (or paste) it here. This restricts the

number of available tables in the Navigator dialog and makes finding the correct

table or view easier

SQL statement You can enter a valid snippet of T-SQL (or a stored procedure or a table-valued

function) that returns data from the database

Chapter 3 Loading Data from Databases and Data Warehouses

62

•	 If the SQL Server instance is using a custom port, you must end the

server name with a comma followed by the port number. This is,

inevitably, a question for corporate DBAs.

•	 If you are running a single SQL Server instance that you have

installed on your own PC, then you can use the name localhost (or a

period) to refer to the local server.

Note  A database instance is a separate SQL Server service running alongside
others on the same physical or virtual server. You will always need both the server
and this instance name (if there is one) to successfully connect. You can also
specify a timeout period if you wish.

Most SQL Server instances host many, many databases. Sometimes these can

number in the hundreds. Sometimes, inevitably, you cannot remember which database

you want to connect to. Fortunately, the Power Query Navigator can let you browse the

databases on a server that you are authorized to access. To do this, do the following:

	 1.	 In the Power Query ribbon, click the small triangle at the bottom

of the Get Data button and then click SQL Server. The SQL Server

database dialog will appear.

	 2.	 Enter the server name in the Server text box and click OK. Do not

enter a database name. The Navigator window opens and displays

all the available databases, as shown in Figure 3-4. Of course, the

actual contents that are displayed will depend on the server that

you are connecting to.

Chapter 3 Loading Data from Databases and Data Warehouses

63

You can see from Figure 3-4 that if you click the small triangle to the left of a

database, then you are able to see all the tables and views that are accessible to you in

this database. Although this can mean an overabundance of possible choices when

looking for the table(s) or view(s) that you want, it is nonetheless a convenient way of

reminding you of the name of the dataset that you require.

Tip  The actual databases that you will be able to see on a corporate server will depend
on the permissions that you have been given. If you cannot see a database, then you will
have to talk to the database administrators to sort out any permission issues.

�Searching for Databases, Tables, and Views in Navigator

If you are overwhelmed by the sheer volume of table(s) and view(s) that appear in the

left panel of the Navigator dialog, then you can use Navigator’s built-in search facility to

help you to narrow down the set of potential data sources.

Figure 3-4.  The Navigator dialog when selecting databases

Chapter 3 Loading Data from Databases and Data Warehouses

64

�Searching for Databases

To isolate specific databases, do the following:

	 1.	 Carry out steps 1 and 2 in the earlier “SQL Server” section to

connect to a SQL Server instance without specifying a database.

	 2.	 In the Search box of the Navigator dialog, enter a few characters

that you know are contained in the name of the table or view that

you are looking for. Entering, for example, US on my server gives

the result that you see in Figure 3-5.

�Searching for Tables
If you are searching for tables, do the following:

	 1.	 Expand any databases that you want to search for specific tables.

	 2.	 In the Search box of the Navigator dialog, expand the database that

interests you and enter a few characters that you know are contained

in the name of the table or view that you are looking for. Entering, for

example, cust on my server gives the result that you see in Figure 3-6.

Figure 3-5.  Using Search with Navigator to find databases

Chapter 3 Loading Data from Databases and Data Warehouses

65

When searching for objects, you can enter the text in uppercase or lowercase (with

most SQL Server installations), and the text can appear anywhere in the names of the

tables or views—not just at the start of the name. With every character that you type, the

list of potential matches gets shorter and shorter. Once you have found the table or view

that you are looking for, simply proceed as described earlier to load the data into Excel

with Power Query.

If your search does not return the subset of tables in any views that you were

expecting, all you have to do is click the cross at the right of the Search box. This cancels

the search and displays all the available tables, as well as clears the Search box.

If you are not convinced that you are seeing all the tables and views that are in the

database, then click the small icon at the bottom right of the Search box (it looks like a

small page with two green circular arrows). This is the Refresh button, which refreshes

the connection to the database and displays all the tables and views that you have

permission to see. Finally, it is worth noting that filtering tables can also be applied to

Excel tables, worksheets, and named ranges as well as Access databases. This is another

example of how the unified Navigator interface can help minimize the learning curve

when it comes to mastering Power Query.

Figure 3-6.  Using Search with Navigator to find tables

Chapter 3 Loading Data from Databases and Data Warehouses

66

�Database Security

Remember that databases are designed to be extremely secure. Consequently, you only

see servers, databases, tables, and views if you are authorized to access them. You might

have to talk to your IT department to ensure that you have the required permissions;

otherwise, the table that you are looking for could be in the database, but remain

invisible to you.

Tip  If you experience a connection error when first attempting to connect to SQL
Server, simply click the Edit button to return to the Microsoft SQL Server database
dialog and correct any mistakes. This avoids having to start over.

�Using a SQL Statement

If there is a downside to using a relational database such as SQL Server as a data source,

it is that the sheer amount of data that the database stores—even in a single table—can

be dauntingly huge. Fortunately, all the resources of SQL Server can be used to filter the

data that is accessed using Power Query before you even load the data. This way, you do

not have to load entire tables of data at the risk of drowning in information before you

have even started to analyze it.

The following are SQL Server techniques that you can use to extend the partnership

between SQL Server and Power Query:

•	 SQL SELECT statements

•	 Stored procedures

•	 Table-valued functions

These are, admittedly, fairly technical solutions. Indeed, if you are not a database

specialist, you could well require the services of your IT department to use these

options to access data in the server. Nonetheless, it is worth taking a quick look at these

techniques in case they are useful now or in the future.

Any of these options can be applied from the SQL Server database dialog. Here is an

example of how to filter data from a database table using a SELECT statement:

	 1.	 In the Data ribbon, click Get Data ➤ From Database ➤ From SQL

Server Database. The SQL Server database dialog will appear.

Chapter 3 Loading Data from Databases and Data Warehouses

67

	 2.	 Enter the server name and the database. This will have to be a

server and database that you have been granted access to.

	 3.	 Click the triangle to the left of Advanced options. This opens a box

where you can enter a SQL command.

	 4.	 Enter the SQL command that you want to apply. In this

example (using a server and database on my PC), it is SELECT

CountryName, MakeName, ModelName, Cost FROM Data.

AllSales ORDER BY CountryName. The dialog will look like

Figure 3-7—only with your SQL in the SQL statement box, of

course.

	 5.	 Click OK. A sample of the corresponding data is eventually

displayed in a dialog like the one shown in Figure 3-8. The actual

data that is returned will depend on the source system that you are

using.

Figure 3-7.  Using SQL to select database data

Chapter 3 Loading Data from Databases and Data Warehouses

68

	 6.	 Click Load or Transform Data to continue with the data load

process. Alternatively, you can click Cancel and start a different

data load.

Tip  When entering custom SQL (or when using stored procedures, as is
explained in the following section), you should, preferably, specify the database
name in step 3. If you do not give the database name, you will have to use a three-
part notation in your SQL query. That is, you must add the database name and a
period before the schema and table name of every table name used in the query.

Figure 3-8.  Database data selected using the SQL statement option

Chapter 3 Loading Data from Databases and Data Warehouses

69

�Stored Procedures in SQL Server

The same principles apply when using stored procedures of functions to return data

from SQL Server. You will always use the SQL statement option to enter the command

that will return the data. Just remember that to call a SQL Server stored procedure

or function, you would enter the following elements into the Microsoft SQL Server

database dialog:

•	 Server: <your server name>

•	 Database: <the database name>

•	 SQL statement: EXECUTE (or EXEC) <enter the schema (if there is

one, followed by a period) and the stored procedure name, followed

by any parameters>

This way, either you or your IT department can create complex and secure ways to

allow data from the corporate databases to be read into Power Query from databases.

To see this in practice, here is an example of using a SQL Server stored procedure

to return only a subset of the available data. The stored procedure is called

pr_DisplayUKClientData, and you apply it like this:

•	 In the Data ribbon, click Get Data ➤ From Database ➤ From SQL

Server Database. The SQL Server database dialog will appear.

•	 Enter the server name and the database.

•	 Click the triangle to the left of Advanced options. This opens a box

where you can enter a SQL command.

•	 Enter the SQL command that you want to apply. In this case, it is

EXECUTE dbo.pr_DisplayUKClientData. The dialog will look like

Figure 3-9.

Chapter 3 Loading Data from Databases and Data Warehouses

70

•	 Click OK. A sample of the corresponding data is returned to the

Navigator.

•	 Click Load or Edit to continue with the data load process.

Alternatively, you can click Cancel and start a different data load.

The data that is returned in this example is only a subset of the available data that

has been selected by the stored procedure. You need to be aware that stored procedures

can perform a multitude of tasks on the source data. These can include selecting, sorting,

and cleansing the data.

Stored procedures often require parameters to be added after the stored procedure

name. This is perfectly acceptable when executing a stored procedure in Power Query.

An example would be

EXECUTE dbo.pr_DisplayUKClientData 2020

Figure 3-9.  Using SQL to select database data

Chapter 3 Loading Data from Databases and Data Warehouses

71

In this specific example, the parameter is “2020”. If you need to enter multiple

parameters, they must be comma-separated.

The key thing to remember—and to convey to your IT department—is that the SQL

that Power Query expects is the flavor of SQL that the source database uses. So, for SQL

Server, that means using T-SQL. In fact, this SQL becomes a “pass-through” query that is

interpreted directly by the underlying database.

Note  A SQL statement or stored procedure will only return data as a single table.
Admittedly, this table could contain data from several underlying tables or views in
the source database, but filtering the source data will prevent Power Query from
loading data from several tables as separate queries. Consequently, you could
have to create multiple queries rather than a single load query to get data from a
coherent set of tables in the data source.

�Oracle Databases
There are many, many database vendors active in the corporate marketplace today.

Arguably the most dominant of them is currently Oracle. While I have used Microsoft

data sources to begin the journey into an understanding of how to use databases with

Power Query, it would be remiss of me not to explain how to access databases from other

suppliers.

So now is the time to show you just how open-minded Power Query really is. It does

not limit you to Microsoft data sources—far from it. Indeed, it is every bit as easy to use

databases from other vendors as the source of your analytical reports. As an example of

this, let’s take a look at loading Oracle data into Excel using Power Query.

Installing and configuring an Oracle database is a nontrivial task. Consequently,

I am not providing an Oracle sample database, but will leave you either to discover a

corporate database that you can connect to or, preferably, consult the many excellent

resources available that do an excellent job of explaining how to set up your own Oracle

database and install the sample data that is available.

Be aware that connecting to Oracle will require installing Oracle client software on

the computer where you are running Power Query. This, too, can be complex to set up.

So you might need some help from a corporate resource or a knowledgeable friend if you

are planning to test using Oracle data with Power Query.

Chapter 3 Loading Data from Databases and Data Warehouses

72

Should you be feeling brave, you can use the following URLs to find the Oracle client

software. For 32-bit versions of Power Query, you could try using the following link to

download and install the 32-bit Oracle client:

www.oracle.com/technetwork/topics/dotnet/utilsoft-086879.html

For 64-bit versions of Power Query, use the following link to download and install

the 64-bit Oracle client:

www.oracle.com/technetwork/database/windows/downloads/index-090165.html

Both these links were active as this book went to press.

If you need to check which version of Power Query you are using (32 bit or 64 bit), click

File ➤ Help ➤ About. You will see a dialog that tells you which version you are using.

So, assuming that you have an Oracle database available (and that you know the server

name or SID as well as a valid user name and password), the following steps show how you

can load data from this particular source into Power Query. I will be using standard Oracle

sample data that is often installed with sample databases in this example.

	 1.	 Open a new Excel workbook.

	 2.	 In the Data ribbon, click Get Data ➤ From Database ➤ From

Oracle Database.

	 3.	 Enter the server name in the Server text box. This will be the name

of your Oracle server or one of the Oracle server resources used by

your organization.

	 4.	 Click the Import button. The dialog will look like Figure 3-10.

Figure 3-10.  The Oracle database dialog

Chapter 3 Loading Data from Databases and Data Warehouses

73

	 5.	 Click OK. The Oracle database security dialog will appear.

Assuming that you are not authorized to use your Windows login

to connect to the database, click Database on the left of the dialog.

	 6.	 Enter the user name and password that allow you to log in to

Oracle. You can see this dialog in Figure 3-11.

	 7.	 Click Connect. Power Query will connect to the server and

display the Navigator dialog containing all the tables and views

in the database that you have permission to see on the server you

selected. In some cases, you could see a dialog saying that the

data source does not support encryption. If you feel happy with an

unencrypted connection, then click the OK button for this dialog.

	 8.	 Expand the HR folder. This is a standard Oracle sample schema

that could be installed on your Oracle instance. If not, you will

have to choose another schema.

	 9.	 Check the Select multiple items check box.

	 10.	 Click the check boxes for the tables that interest you. The data

for the most recently selected data appears on the right of the

Navigator dialog, exactly as was the case with SQL Server.

Figure 3-11.  The Oracle database security dialog

Chapter 3 Loading Data from Databases and Data Warehouses

74

	 11.	 Click Load. The Queries & Connections pane will appear and

show the query for each selected table.

If you have already followed the example earlier in this chapter to load data from

SQL Server, you will probably appreciate how much the two techniques have in

common. Indeed, one of the great advantages of using Power Query is that loading data

from different data sources follows a largely similar approach and uses many of the

same steps and dialogs. This is especially true of databases, where the steps are virtually

identical—whatever the database.

Of course, no two databases are alike. Consequently, you connect to an Oracle

instance (or server) but cannot choose a database as you can in SQL Server (or Sybase,

for instance). Similarly, where Oracle has schemas to segregate and organize data tables,

SQL Server has databases. Nonetheless, the Power Query Navigator will always organize

data into a hierarchy of folders so that you can visualize the data structures in a clear,

simple, and intuitive manner, whatever the underlying database.

�Other Relational Databases
Table 3-1 at the start of this chapter contains the list of relational databases that Power

Query could connect to as this book went to press. I imagine that the list has grown since

this book was published. However, the good news is that you probably do not need much

more information to connect to any of the databases that are available for you to use as

data sources. Simply put, if you know how to connect to one of them, you can probably

connect to any of them.

So I am not going to fill out reams of pages with virtually identical explanations of

how to get data from a dozen or more relational databases. Instead I suggest that you

simply try to connect, using the techniques that you have learned in this chapter for

Oracle and SQL Server.

Be warned, though, that to connect to a relational database, you will inevitably need

to know the following details:

•	 The server name

•	 A database name (possibly)

Chapter 3 Loading Data from Databases and Data Warehouses

75

•	 A valid username (depending on the security that has been

implemented)

•	 A valid password for the user that you are connecting as (this, too,

will depend on the security in place)

However, if you have these elements, then nothing should stop you from using a

range of corporate data sources as the basis for your analysis with Power Query. You will,

of course, need all the necessary permissions to access the database and the data that it

contains.

It is also worth knowing that connecting to DB2, MySQL, PostgreSQL, Sybase, IBM

Informix, IBM Netezza, SAP HANA, or Teradata can require not only that the database

administrator has given you the necessary permissions but also that connection software

(known as drivers or providers) has been installed on your PC. Given the “corporate”

nature of the requirements, it may help if you talk directly to your IT department to get

this set up in your enterprise IT landscape.

One way to find out if the software that is required to enable a connection to a

specific database has been installed is to select the database from the list available in the

Get Data dialog. If the drivers have not been installed, you will see a warning similar to

the one in Figure 3-12.

Clicking the “Learn more” link will take you to the download page for the missing

drivers. Be warned, however, that configuring data providers can, in some cases, require

specialist knowledge as well as local admin rights on the computer where the drivers

have to be installed.

Figure 3-12.  The missing driver alert

Chapter 3 Loading Data from Databases and Data Warehouses

76

�Microsoft SQL Server Analysis Services Data
Sources
An Analysis Services database is a data warehouse technology that can contain vast

amounts of data that has been optimized to enable decision making. SSAS cubes

(as these databases are also called) are composed of facts (measures or values) and

dimensions (descriptive attributes).

In fact—and with apologies to data warehouse purists—an SSAS cube is, essentially,

a gigantic pivot table. So, if you have used pivot tables in Excel, you are ready to access

data warehouse sources in Power Query and slice and dice the data they contain.

Note  In this section I will be explaining access to dimensional (disk-based) SSAS
data warehouses. I explain tabular SSAS in the next section.

Please note that there is no sample SSAS database supplied with this book. This is

because installing and configuring SSAS is a considerable task that requires specialist

knowledge. So I will leave you to obtain the login details for your corporate Analysis

Services database(s) and use those to experiment with.

If your work environment uses Analysis Services databases, you can access them by

carrying out the following steps:

	 1.	 In the Data ribbon, click Get Data ➤ From Database ➤ From

Analysis Services Database (Import).

	 2.	 Click Connect. The SQL Server Analysis Services database dialog

will appear.

	 3.	 Enter the Analysis Services server name and the database

(or “cube”) name. The database I am using here is called

CarSalesOLAP; you will have to specify your own SSAS database

name. In any case, you will need to use the name of your own

SSAS server. The dialog will look something like the one shown

Figure 3-13—only with your server and database names, of course.

Chapter 3 Loading Data from Databases and Data Warehouses

77

	 4.	 Click Connect. You will probably see the Connecting dialog,

briefly, as shown in Figure 3-15.

Figure 3-13.  Connecting to an SSAS (multidimensional) database

Figure 3-14.  Specifying the appropriate security when connecting to an SSAS
(multidimensional) database

Chapter 3 Loading Data from Databases and Data Warehouses

78

	 5.	 The Navigator dialog will appear. Expand the folders in the left

pane of the dialog. This way, you can see all the fact tables and

dimensions contained in the data warehouse.

	 6.	 Select the fact tables, dimensions, or even only the dimension

attributes and measures that you want to load. On my laptop, the

dialog looks something like Figure 3-16. Obviously, you will see

the fact tables and dimensions that are hosted by the Analysis

Services instance that you are connecting to.

Figure 3-15.  SQL Server Analysis Services credentials dialog

Figure 3-16.  Selecting attributes and measures from an SSAS cube

Chapter 3 Loading Data from Databases and Data Warehouses

79

	 7.	 Click Load. The Queries & Connections pane will display a new

query, and the measures and attributes that you selected will

appear in a new worksheet. You can see an example of this in

Figure 3-17.

In step 7 you can, of course, click the popup triangle at the right of the Load button

and choose from the other possible load options that you saw in Chapter 2.

Note  If you did not enter the cube (database) name in step 3, then the Navigator
dialog will display all the available cubes on the SSAS server. From here you can
drill down into the cube that interests you to query the data you require.

SSAS cubes are potentially huge. They can contain dozens of dimensions, many

fact tables, and literally thousands of measures and attributes. Understanding

multidimensional cubes and how they work is beyond the scope of this book.

Nonetheless, it is important to understand that for Power Query, a cube is just another

data source. This means that you can be extremely selective as to the cube elements that

Figure 3-17.  The output from an SSAS cube in an Excel worksheet

Chapter 3 Loading Data from Databases and Data Warehouses

80

you load into Power Query and only load the elements that you need for your analysis.

You can load entire dimensions or just a few attributes, just like you can load whole fact

tables or just a selection of measures.

Note  You can filter the data that is loaded from an SSAS cube by expanding the
MDX or DAX query (optional) item in the SQL Server Analysis Services database
dialog. Then you can enter an MDX query in the box that appears before clicking
OK. Be warned that “classic” (on-disk) SSAS cubes use queries written in MDX—a
specialist language that is considered not easy to learn. The good news is that if
an Analysis Services expert has set up a cube correctly, you can see SSAS display
folders in the Query Editor.

�From Analysis Services
It may seem strange to have two options that appear in the Get Data ➤ From Database

category that both concern Analysis Services. These are

–– From Analysis Services Database (Import)

–– From Analysis Services

The first is the one you saw in the previous section and is a totally standard Power

Query connection process. The second has, surprisingly, nothing to do with Power

Query at all. It is, in fact, an older type of connection that has existed in Excel since the

2007 version. It is called an Office Data Connection.

So, even if this type of connection cannot be used in the context of Power Query (and

therefore is, technically, outside the scope of this book), I prefer to explain it anyway—

even if this is only to clear up the confusion felt by many users when faced with these two

different methods of accessing SSAS data.

To connect to an Analysis Services database using Office Data Connection:

	 1.	 In the Data ribbon, click Get Data ➤ From Database ➤ From

Analysis Services Database. The Connect to Database Server

dialog will appear.

	 2.	 Enter the Analysis Services server name as shown in Figure 3-18. You

will, of course, have to use your Analysis Services instance name.

Chapter 3 Loading Data from Databases and Data Warehouses

81

	 3.	 Click Next. The Select Database and Table dialog will appear,

as shown in Figure 3-19. Here you can select from any available

databases on the Analysis Services server.

Figure 3-18.  The Connect to Database Server dialog 

Figure 3-19.  The Select Database and Table dialog

Chapter 3 Loading Data from Databases and Data Warehouses

82

	 4.	 Click Next. The Save Data Connection File and Finish dialog will

appear, as shown in Figure 3-20. Here you can add a description

and a friendly name that will help you—or other users—to identify

this connection from those available.

	 5.	 Click Finish. The Import Data dialog will appear, as shown in

Figure 3-21. This offers slightly more restricted choices that you

saw previously when using Power Query to connect to Analysis

Services.

Figure 3-20.  The Save Data Connection File and Finish dialog

Chapter 3 Loading Data from Databases and Data Warehouses

83

	 6.	 Click OK. Excel will create a pivot table (or a pivot chart if this is

what you have selected) based on the Analysis Services data in

either a new or an existing worksheet.

I must reemphasize that the source data cannot be cleansed, modeled, or tweaked in

Power Query when you are using this type of connection and that, consequently, you will

not see a query appear in the Queries & Connections pane.

�SSAS Tabular Data Warehouses
The previous section showed you how to connect to a “classic” SQL Server Analysis

Services cube. However, there are now two types of SQL Server Analysis Services data

warehouses:

•	 The “traditional” dimensional cube

•	 The “newer” tabular data warehouse

As more and more data warehouses (at least the ones that are based on Microsoft

technologies) are being built using the newer, tabular technology, it is probably worth

your while to see how quickly and easily you can use to connect to these data sources

with Power Query. Indeed, the steps that you follow to connect to either of these data

Figure 3-21.  The Import Data dialog

Chapter 3 Loading Data from Databases and Data Warehouses

84

warehouse sources are virtually identical. However, as Power Query is rapidly becoming

the tool of choice to query tabular data warehouses, it is certainly worth a few minutes to

learn how to use it to connect to SSAS tabular (as it is often called, for short).

Once again, you will need your own SSAS tabular database available to attempt

making a connection to this kind of Analysis Services database.

	 1.	 In the Data ribbon, click Get Data ➤ From Database ➤ From

Analysis Services Database (Import). The SQL Server Analysis

Services database dialog will appear.

	 2.	 Enter the Analysis Services server name and the tabular database

name (we don’t tend to call these cubes). Here, the database is

CarSalesTabular on my PC; you will have to specify your own

tabular database name. In any case, you will need to use the name

of your own SSAS server.

	 3.	 Click Import.

	 4.	 The dialog will look like Figure 3-22.

	 5.	 Click OK. If this is the first time that you are connecting to the

tabular data warehouse, then the Access SQL Server Analysis

Services dialog will appear so that you can define the credentials

that you are using to connect to the Analysis Services database,

where you will have to accept or alter the credentials. You can see

this dialog in Figure 3-23.

Figure 3-22.  Connecting to an SSAS (multidimensional) database

Chapter 3 Loading Data from Databases and Data Warehouses

85

Figure 3-23.  The credentials dialog

	 6.	 Click Connect. The Navigator dialog will appear.

	 7.	 Expand the folders in the left pane of the dialog. This way, you can

see all the tables contained in the data warehouse. These may—or

may not—be structured as facts and dimensions as was the case

with a “classic” SSAS data warehouse.

	 8.	 Select the tables that you want to load. The dialog will look

something like Figure 3-24.

Chapter 3 Loading Data from Databases and Data Warehouses

86

	 9.	 Click Load. The data will be loaded (most probably into a new

worksheet—but this will depend on your environment).

Tip  You can filter the data that is loaded from an SSAS tabular database by
expanding the MDX or DAX query (optional) item in the SQL Server Analysis
Services database dialog. Then you can enter a DAX query in the box that appears
before clicking OK. SSAS tabular databases use queries written in a specific
language called DAX.

Figure 3-24.  Selecting attributes and measures from an SSAS tabular data source

Chapter 3 Loading Data from Databases and Data Warehouses

87

�Types of Credentials When Connecting
When connecting to just about any database—be it a Microsoft database such as SQL

Server or Analysis Services or one of the non-Microsoft databases for which there are

connectors available in Excel—you will have to choose how to be authenticated by

the database. This will involve specifying the type of credentials that you want to pass

through to the database from which you want to extract data.

There are essentially three types of connections available (as you saw in Figure 3-14):

•	 Windows: This means using your Windows login to the corporate

network or local workgroup to authenticate against the database.

This presumes that your Windows login has been given the rights to

access the database and the data it contains.

•	 Basic: This means entering a user name and password that will be

recognized by the database that has been given the rights to access

the database and the data it contains. Clearly you will need to have

this information to hand before attempting this kind of connection.

•	 Microsoft account: This means using your Microsoft account to access

the database and the data it contains. Once again, this account must

have been given the rights to access the database and the data it

contains.

Power Query saves a data source credential, or sign-in identity, for each data source

connection you have used.

�Unable to Connect
There will, inevitably, be times when you cannot connect to an external database from

Power Query in Excel. You will discover this pretty quickly when you see the dialog

shown in Figure 3-25.

Chapter 3 Loading Data from Databases and Data Warehouses

88

Quite simply, the solution is to click the Edit button, which will redisplay the

connection dialog for this specific data source. Then you enter the correct connection

information—and try to connect, again.

�Other Database Connections
Power Query does not limit you to a predefined set of available data sources. Provided

that your source database comes complete with one of the generic data providers—

ODBC or OLE DB—then Power Query can, in all probability, access these sources too.

You will learn about these in Chapter 5.

�Conclusion
In this chapter, you have seen how to connect Power Query to some of the plethora of

databases and data warehouses that currently exist. Moreover, you have seen that Power

Query comes equipped “out of the box” with connections to some of the most widely

used databases that currently exist in a corporate environment.

Figure 3-25.  The Unable to connect dialog

Chapter 3 Loading Data from Databases and Data Warehouses

89
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_4

CHAPTER 4

Loading Data from the
Web and the Cloud
In this chapter, we will take a look at a subset of the fast-growing and wide-ranging set of

data sources available over the Internet that you can use as a source of analytical data for

Excel. While the data sources that you will see in the following pages may be extremely

diverse, they all have one thing in common: they are stored outside the enterprise and

are available using an Internet connection.

Looking at all the available sources in detail would take up an entire book, so I will

only show you how to access some of the mainstream services that are currently on

offer. Once you have learned how to access a few of them, you should be able to extend

the basic techniques to access just about any of the web and cloud services that can

currently be used by Power Query to import data into Excel.

The ever-increasing range of data sources that are accessible using Power Query are

provided by several different suppliers. So nearly all of the data connections outlined

in this chapter require access to a specific online source. Most of these sources are

industrial strength—and not free. However, if your enterprise is not a subscriber to these

services, and you wish, nevertheless, to experiment with them, it could be worth taking a

look at the free trial offers available from many (if not all) of the service providers whose

offerings are outlined in this chapter. Consequently, many of these data sources are only

available with an Excel Pro or Enterprise licence.

�Web and Cloud Services
Before delving into the details of some of the web and cloud services that are available,

let’s take an initial high-level look at what these really are. These data sources include

(among others)

https://doi.org/10.1007/978-1-4842-6018-0_4#ESM

90

•	 Web pages

•	 Online services, such as Salesforce or MS Dynamics 365

•	 Microsoft Azure, which covers hosting files in Azure Blob services,

storing data in an Azure SQL Database, or storing data in an Azure

Synapse Analytics (or even reading big data in Azure HDInsight)

�Web Pages
If you need to collect some data that you can see as a table in a web browser, you can use

Power Query to connect to the URL for the page in question and then load all the data

from any table on the page.

�Online Services
Online services is a catch-all phrase used to describe data that you can access using

the Internet. Most of the online services available to Power Query are what are called

“platforms.” These are (often huge) software and data resources that either are only

available online or were once housed in corporate systems but are now available as

services on the Internet. There are currently several online services that are available to

connect to using Power Query. They are listed in Table 4-1.

Table 4-1.  Online Services Currently Available to Power Query

Source Comments

Salesforce Objects Lets you access data in Salesforce

Salesforce Reports Lets you access the prestructured data objects (both native and

custom) that underlie built-in Salesforce reports

Facebook Accesses Facebook data

SharePoint Online Connects to the cloud-hosted version of Microsoft SharePoint

Microsoft Exchange Online Connects to the cloud-hosted version of Microsoft Exchange

Dynamics 365 Online Connects to the cloud-hosted version of Microsoft Dynamics

365—the MS CRM and ERP solution

Chapter 4 Loading Data from the Web and the Cloud

91

�Microsoft Azure
Azure is the Microsoft Cloud. The Azure data sources that Power Query can currently

connect to, and can preview and load data from, are given in Table 4-2.

Obviously, more Azure connection options may be added to Power Query in Excel by

Microsoft as the Azure offering is extended.

Note  Power Query can also access SharePoint on-premises and MS Exchange
data. However, I shall not be examining these connections in this book.

�Web Pages
As a first and extremely simple example, let’s grab some data from a web page. This is

made extremely easy by Power Query, as it can read the tables of data present in any web

page. Since I want to concentrate on the method rather than the data, I will use a web

Table 4-2.  Azure Sources

Source Comments

Microsoft Azure SQL Database Lets you connect to a Microsoft SQL Server cloud-based

database and import records from all the data tables and

views that you are authorized to access

Microsoft Azure SQL data warehouse

(now rebranded as Azure Synapse

Analytics)

Lets you connect to Microsoft’s cloud-based, elastic,

enterprise data warehouse

Microsoft Azure Blob Storage Reads from a cloud-based unstructured data store

Microsoft Azure Table Storage Reads from Microsoft Azure tables

Microsoft Azure Data Lake Storage

(Gen1 and Gen2)

Lets you connect to Microsoft’s raw data cloud storage

Microsoft Azure HDInsight Reads cloud-based Hadoop files in the Microsoft Azure

environment

Chapter 4 Loading Data from the Web and the Cloud

92

page that has nothing to do with the sample data used elsewhere in this book. I will not

be using this other than as a simple introduction to the process of loading data from web

pages using Power Query.

Assuming that you have launched Excel

	 1.	 In the Data ribbon, click From Web.

	 2.	 Enter the following URL (it is a Microsoft help page for Power

Query that contains a few tables of data): http://office.

microsoft.com/en-gb/excel-help/guide-to-the-power-

query-ribbon-HA103993930.aspx. I am, of course, hoping that it

is still available when you read this book. Of course, if you have a

URL that you want to try out, then feel free! The dialog will look

something like Figure 4-1.

	 3.	 Click OK. The Navigator dialog will appear. After a few seconds,

during which Power Query is connecting to the web page, the list

of available tables of data in the web page will be displayed.

	 4.	 Click one of the table names on the left of the Navigator dialog.

The contents of the table will appear on the right of the Navigator

dialog to show you what the data in the chosen table looks like, as

shown in Figure 4-2.

Figure 4-1.  The From Web dialog

Chapter 4 Loading Data from the Web and the Cloud

http://office.microsoft.com/en-gb/excel-help/guide-to-the-power-query-ribbon-HA103993930.aspx
http://office.microsoft.com/en-gb/excel-help/guide-to-the-power-query-ribbon-HA103993930.aspx
http://office.microsoft.com/en-gb/excel-help/guide-to-the-power-query-ribbon-HA103993930.aspx

93

	 5.	 Select the check box in the Navigator dialog (shown to the left of

Table 4 in Figure 4-2).

	 6.	 Click Load at the bottom of the window. The data will be loaded

into a new worksheet.

Tip  Another way of accessing web pages is to click the small triangle at the
bottom of the Get Data button in the Data ribbon and select From Other Sources ➤
From Web from the menu that appears.

This simple example showed how you can select tables of data from a web page and

load them into Excel.

�Advanced Web Options
In step 3 of the previous example, you could have selected the Advanced button. Had

you done this, the From Web dialog would have expanded to allow you to build complex

URLs by adding URL parts. You can see an example of this in Figure 4-3.

Figure 4-2.  The Navigator dialog previewing the contents of a table on a web page

Chapter 4 Loading Data from the Web and the Cloud

94

Clicking the Add part button allows you to define multiple URL parts.

If necessary, you can also specify HTTP request header parameters that will be used

when submitting the URL. These could be required by certain web pages. A discussion of

these is outside the scope of this book.

�Viewing the Source Web Page
It can be more than a little disconcerting to see only the tables from a web page—and

not the actual page itself—in the Navigator. After all, the Web is a quintessentially visual

medium.

So Power Query has a useful addition to the Navigator that applies only to web pages.

This is the possibility to see the actual page itself in the Navigator—just as it appears in a

web browser. To try this out:

	 1.	 Follow steps 1 through 3 as described earlier.

	 2.	 Click Web View on the right of the Navigator. You should see

something like the page shown in Figure 4-4.

Figure 4-3.  The Advanced options in the From Web dialog

Chapter 4 Loading Data from the Web and the Cloud

95

You can now scroll down the page—and flip back to viewing only the data in the

tables in the page by clicking Table View on the right-hand side of the dialog.

�Salesforce
One of the pioneers in the software as a service (SaaS) space—and now, indisputably,

one of the leaders—is Salesforce. So it is perhaps inevitable that Power Query will allow

you to connect to Salesforce and load into Excel any data that you have permission to

view using your Salesforce account.

Indeed, Salesforce is such a wide-ranging and complete service that you have two

possible methods of accessing your data:

Figure 4-4.  Viewing the source web page in the From Web dialog

Chapter 4 Loading Data from the Web and the Cloud

96

•	 Objects

•	 Reports

Briefly, Salesforce objects are the underlying data structures (that you can consider

as kinds of tables) that contain the information that you want to access. Salesforce

reports are the data that has been collated from the data tables into a more accessible

form of output.

Tip I f you do not have a corporate Salesforce account but want, nevertheless,
to see how to use Power Query to connect to Salesforce data, you can always set
up a free 30-day trial account. The URL for this is www.salesforce.com/form/
signup/freetrial-sales.jsp.

�Loading Data from Salesforce Objects
Assuming, then, that you have a valid Salesforce account, here is how you can load data

from Salesforce objects into Excel:

	 1.	 Open a new Excel application.

	 2.	 In the Excel Data ribbon, click the Get Data button.

	 3.	 Click From Online Services ➤ From Salesforce Objects. The

Salesforce Objects dialog will appear. It should look like the one

shown in Figure 4-5.

Figure 4-5.  The Salesforce Objects dialog

Chapter 4 Loading Data from the Web and the Cloud

http://www.salesforce.com/form/signup/freetrial-sales.jsp
http://www.salesforce.com/form/signup/freetrial-sales.jsp

97

	 4.	 Select the Production button and click OK. The Access Salesforce

login dialog will appear. It should look like the one shown in

Figure 4-6.

	 5.	 Unless you are already signed in, click Sign in. The Salesforce sign-

in dialog will appear.

	 6.	 Enter your Salesforce user name and password. The dialog should

look something like the one shown in Figure 4-7.

Figure 4-6.  The Access Salesforce login dialog

Chapter 4 Loading Data from the Web and the Cloud

98

	 7.	 If this is the first time that you are connecting to Salesforce from

Power Query (or if you have requested that Salesforce request

confirmation each time that you log in), you will be asked to

verify your identity. The Salesforce Verify Your Identity dialog will

appear, as shown in Figure 4-8.

Figure 4-7.  The Salesforce sign-in dialog

Chapter 4 Loading Data from the Web and the Cloud

99

	 8.	 Click Verify. Salesforce will send a verification code to the email

account that you are using to log in to Salesforce.

	 9.	 Enter the code in the Verification Code field and click OK. You will

see the Allow Access dialog, as in Figure 4-9.

Figure 4-8.  The Salesforce Verify Your Identity dialog

Chapter 4 Loading Data from the Web and the Cloud

100

	 10.	 Click Allow. You will return to the Access Salesforce dialog, only

now you are logged in.

	 11.	 Click Connect. The Navigator will appear, showing the Salesforce

objects that you have permissions to access. You can see an

example of this in Figure 4-10.

Figure 4-9.  The Salesforce Allow Access dialog

Chapter 4 Loading Data from the Web and the Cloud

101

	 12.	 Select the objects whose data you wish to load into Excel and click

Load. The data will be loaded into Excel ready for you to create

reports based on your Salesforce data.

Tip T o avoid having to confirm your identity to Salesforce every time that
you create a new suite of Excel reports using Salesforce data, you can check
“Remember me” in the Salesforce sign-in dialog and “Don’t ask again” in the
Salesforce Verify Your Identity dialog.

Salesforce objects contain a vast amount of data. However, from the point of view of

Power Query, this is similar to accessing a database structure. This means that you have

to have some understanding of how the underlying data is stored. Should you wish to

learn about the way that Salesforce data is structured, then I suggest that you start with

the Salesforce documentation currently available at https://trailhead.salesforce.

com/en/modules/data_modeling/units/objects_intro.

Figure 4-10.  Salesforce objects viewed in the Navigator

Chapter 4 Loading Data from the Web and the Cloud

https://trailhead.salesforce.com/en/modules/data_modeling/units/objects_intro
https://trailhead.salesforce.com/en/modules/data_modeling/units/objects_intro

102

�Salesforce Reports
If you find that you are simply submerged by the amount of data that is available in

Salesforce, you can, instead, go directly to the data that underlies standard Salesforce

reports. This will avoid your having to learn about the underlying data structures. The

downside is that you cannot easily extend these datasets.

To access Salesforce report data, simply follow the steps outlined in the previous

section. However, instead of choosing Salesforce Objects in step 3, select Salesforce

Reports instead. The Navigator dialog will, in this case, look something like the one

shown in Figure 4-11.

From here you can select and load the reports data from Salesforce that you want to

use for further analysis.

�Microsoft Dynamics 365
Another online service that contains much valuable enterprise data is Microsoft

Dynamics 365. As you would probably expect, Power Query in Excel can connect easily

to Microsoft online sources such as Dynamics. Here is how to do this if your organization

uses this specific platform:

Figure 4-11.  The Navigator dialog showing the data for Salesforce Reports

Chapter 4 Loading Data from the Web and the Cloud

103

	 1.	 Open a new Excel application.

	 2.	 In the Excel Data ribbon, click the Get Data button.

	 3.	 Click From Online Services ➤ From Dynamics 365 (online)

	 4.	 Click Connect. The Dynamics 365 (online) dialog will appear.

	 5.	 Enter the URL that you use to connect to Dynamics 365 and add

/api/data/v8.1 (at least, this was the case as this book went

to press). It could look like the one shown in Figure 4-12. Note,

however, that this URL will vary depending on where you are in

the world.

	 6.	 Click OK. The OData feed dialog will appear. This is because

Power Query uses OData to connect to Dynamics 365 Online.

	 7.	 Select Organizational Account as the security access method.

	 8.	 Click Sign In to sign in to your Dynamics 365 account and follow

the Microsoft sign-in process.

	 9.	 Click Connect. The Navigator dialog will appear showing all the

Dynamics objects that you have permissions to connect to.

Note I n step 6 you saw that an MS Dynamics 365 connection is really an OData
connection. OData is explained in more detail in the following chapter.

Figure 4-12.  The Dynamics 365 (online) dialog

Chapter 4 Loading Data from the Web and the Cloud

104

There are a huge number of Dynamics 365 tables—and this number will vary

depending on the subscription that your organization has taken out. However, you

are, in reality, accessing a database structure. This means that you have to have some

understanding of how the underlying data is stored. Should you wish to learn about

Dynamics 365 tables, then I suggest that you start with the Microsoft online help at

https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/

data-entities/data-entities.

�Azure SQL Database
SQL Server does not only exist as an on-premises database. It is also available as a

“platform as a service” (also known as PaaS). Simply put, this lets you apply a pay-as-

you-go model to your database requirements where you can fire up a database server in

the cloud in a few minutes and then scale it to suit your requirements, rather than buying

hardware and software and having to maintain them.

Connecting to Microsoft’s PaaS offering, called Azure SQL Database, is truly simple.

If you have the details of a corporate Azure SQL Database, you can use this to connect

to. If you do not, and nonetheless want to experiment with connecting Power Query to

Azure SQL Database, you can always request a free trial account from Microsoft and

set up an Azure SQL Database database in a few minutes. If this is the path that you are

taking, then you can find instructions on how to do this (including loading the sample

data that you will connect to later in this section) at the following URL: https://docs.

microsoft.com/en-gb/azure/sql-database/sql-database-get-started-portal.

Tip  When you are creating your own Azure SQL Database to test connectivity
from Power Query, be sure to define the source to be Sample. This will ensure that
the MS sample data is loaded into your test database.

To connect from Excel to an Azure SQL Database using Power Query:

	 1.	 Open a new Excel application.

	 2.	 In the Excel Data ribbon, click Get Data ➤ From Azure ➤ From

Azure SQL Database. The SQL Server database dialog will appear

(after all, an Azure SQL Database is a SQL Server database—but in

the cloud).

Chapter 4 Loading Data from the Web and the Cloud

https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities
https://docs.microsoft.com/en-gb/azure/sql-database/sql-database-get-started-portal
https://docs.microsoft.com/en-gb/azure/sql-database/sql-database-get-started-portal

105

	 3.	 Enter the Azure SQL Database server name that you obtained

from the Microsoft Azure Management Portal (or that was given to

you by a corporate DBA). The SQL Server database dialog will look

like the one shown in Figure 4-13.

	 4.	 Click OK. The credentials dialog will appear.

	 5.	 Click Database on the left and enter a valid user name and

password. The credentials dialog will look like the one shown in

Figure 4-14.

Figure 4-13.  The SQL Server database dialog for an Azure SQL Database connection

Figure 4-14.  The SQL Server credentials dialog for an Azure SQL Database connection

Chapter 4 Loading Data from the Web and the Cloud

106

	 6.	 Click Connect. The Navigator dialog will appear showing the

database(s) that you have permission to access in the Azure SQL

Server Database.

Note I f you are setting up an Azure SQL Database, make sure that you include
firewall rules to allow connection from the computer where you are running Excel
to the Azure SQL Database.

If you followed the steps to connect to an on-premises SQL Server database in

Chapter 3, then you are probably feeling that the approach used here is virtually

identical. Fortunately, the Power Query development team has worked hard to make the

two processes as similar as possible. This extends to

•	 Ensuring that the DataSource settings are stored by Power Query

and can be updated just as you can for an on-premises database

connection

�Azure SQL Data Warehouse (Azure Synapse
Analytics)
Azure has many available platforms to store data. One that is particularly well adapted

to Power Query is the Azure SQL Data Warehouse—now known as Azure Synapse

Analytics. This is an MPP (massively parallel processing) data warehouse that is hosted

in Azure.

Once again I will presume that you have a corporate Azure Synapse Analytics

instance at hand and that you have the relevant access rights to Azure Synapse Analytics.

Here, too, you need firewall rules to be set up correctly (although this may not be strictly

necessary if you have previously set up firewall rules for, say, Azure SQL Database). I

imagine that you could need the assistance of corporate IT support to ensure that the

connection can be made successfully.

Assuming that you have access to an Azure Synapse Analytics instance:

	 1.	 Open a new Excel application.

	 2.	 In the Data ribbon, click Get Data ➤ From Azure ➤ From Azure

SQL Data Warehouse.

Chapter 4 Loading Data from the Web and the Cloud

107

	 3.	 Enter the Azure SQL Data Warehouse server name that you

obtained from the Microsoft Azure Management Portal (or that

was given to you by a corporate IT). The SQL Server database

dialog will look like the one shown in Figure 4-15. This is because

Azure Synapse Analytics is, essentially, a SQL Server database.

	 4.	 Select the Import button and then click OK. The credentials dialog

will appear.

	 5.	 Click Database on the left and enter a valid user name and

password.

	 6.	 Click Connect. The Navigator dialog will appear showing the

database(s) that you have permission to access in the Azure SQL

Server database.

	 7.	 Select the tables that you need and click Load or Edit to return

to Excel. Remember to click Select multiple items if you want to

import several tables simultaneously.

Note  Do not be phased by the fact that the title for the dialog where you specify
the server and database says “SQL Server database.” This will connect you to the
Azure SQL Data Warehouse correctly.

Figure 4-15.  The SQL Server database dialog for an Azure Synapse Analytics
connection

Chapter 4 Loading Data from the Web and the Cloud

108

�Connecting to SQL Server on an Azure Virtual
Machine
More and more databases are now hosted outside a corporate environment by cloud

service providers. With a provider such as Amazon (with RDS for SQL Server) or

Microsoft (that offers virtual machines—or VMs—for SQL Server in Azure), you can now

site your databases outside the enterprise and access them from virtually anywhere in

the world.

So, to extend the panoply of data sources available to Power Query, we will now

see, briefly, how to connect to SQL Server on an Azure Virtual Machine. Admittedly,

connecting to SQL Server on an Azure Virtual Machine is nearly the same as connecting

to SQL Server in a corporate environment—as you saw in Chapter 3. However, it is worth

a short detour to explain, briefly, how to return data to Excel from a SQL Server instance

in the cloud using Power Query.

Once again, if you do not have a SQL Server instance that is hosted on an Azure

Virtual Machine in your corporate environment, then you can always test this process

using an Azure trial account. I cannot, however, explain here how to set up a SQL Server

instance on a VM, as this is a large and separate subject that is outside the scope of this

book. There are, however, many resources available that can explain how to do this

should you need them.

To connect to SQL Server on a Virtual Machine in Azure:

	 1.	 Open a new Excel application.

	 2.	 In the Excel ribbon, click the small triangle at the bottom of

the Get Data button and then click SQL Server. The SQL Server

database dialog will appear.

	 3.	 Enter the full string that describes the server in the Server text

box. Either this will be given to you by a corporate DBA or, if you

are using your own Azure account, you can find it in the Azure

Management Portal.

	 4.	 Enter the database name corresponding to the database that you

have the right to access. The dialog will look like Figure 4-16.

Chapter 4 Loading Data from the Web and the Cloud

109

	 5.	 Click OK. The Access a SQL Server Database dialog will appear.

Select Database as the security mode and enter the user name

and password, as shown in Figure 4-17. If you are using your own

Azure account, these can be the user name and password that you

specified when setting up the virtual machine.

Figure 4-16.  The Microsoft SQL Server database dialog for an Azure VM

Figure 4-17.  The SQL Server database dialog when connecting to a virtual machine

Chapter 4 Loading Data from the Web and the Cloud

110

	 6.	 If you see the encryption support dialog, click OK. The Navigator

dialog will appear listing all the tables that you have permissions

to see on the SQL Server hosted by the virtual machine.

As you can see, the process is virtually identical to the one that you followed to

connect to SQL Server in Chapter 3. I have, nonetheless, a few points that I need to bring

to your attention:

•	 You use the Azure VM multipart name as the server name.

•	 As was the case when connecting to an on-premises SQL Server

instance, you can select the database if required.

•	 You can use the server’s IP address as the database name if the VM

has specified a public IP address.

•	 Security is a big and separate question. In a corporate environment,

you might be able to use Windows security to connect. You will

almost certainly have to use database security for a test VM.

•	 As is always the case in Azure, firewalls must be set up correctly.

�Azure Blob Storage
The final Azure data source that I want to introduce you to in this chapter is Azure Blob

Storage. To all intents and purposes, you can consider this, as far as Excel is concerned,

as a file share in the cloud. So if you need to access data that is stored as files, you can

connect to them via Azure Blob Storage.

Once again, you will need either corporate access to Azure Blob Storage or an Azure

trial account. In either case, you need to copy the two sample files that are in the folder

C:\PowerBiDesktopSamples\MultipleIdenticalFiles into a container in your Azure Blob

Storage. Downloading the sample files is explained in Appendix A.

Once the source data is available in Azure Blob Storage, you can carry out the

following steps:

	 1.	 Open a new Excel application.

	 2.	 In the Data ribbon, click Get Data ➤ From Azure ➤ From Azure

Blob Storage.

Chapter 4 Loading Data from the Web and the Cloud

111

	 3.	 Enter the account name that you are using to connect to Azure

Blob Storage. The Azure Blob Storage dialog will look like the one

shown in Figure 4-18. If you are using a corporate Azure Blob

Storage account, then your system administrator will provide this.

In a test scenario, you can find this in the Azure Management

Portal by opening the Storage Account blade and copying the Blob

Service Endpoint.

	 4.	 Click OK. The Azure Blob Storage Account Key dialog will appear.

	 5.	 In the Azure Management Portal, copy an account key. These

can be found in the Azure Management Portal by clicking the

Storage Account blade and then clicking Access Keys. If you have

been sent an account key by a system administrator, then use that

instead. You can see this dialog in Figure 4-19.

Figure 4-18.  Connecting to an Azure Blob Storage

Chapter 4 Loading Data from the Web and the Cloud

112

	 6.	 Paste the account key into the Azure Blob Storage Account key

dialog.

	 7.	 Click Connect. The Navigator will appear, showing the list of files

in the selected container.

	 8.	 Click Load. The list of files stored in Azure will appear in Power

Query.

Note I t is important to note that, for the moment at least, what you have returned
from Azure is a list of available files. Chapter 9 explains how to select and load
data from some or all of the available files into Excel, where they can be used as a
basis for analytics.

�Azure Security
All cloud service providers take security extremely seriously. As you have seen in this

chapter, you will always be obliged to enter some form of security token and/or specify a

valid user name and password to connect to cloud-based data.

Figure 4-19.  Azure Blob Storage Account key

Chapter 4 Loading Data from the Web and the Cloud

113

�Other Source Types
Clearly it would be impossible to explain how to use all of the potential data sources

without devoting a considerable number of pages to the subject. Moreover, not

everybody will need to access every place where external data is stored. Indeed, most

users only ever need to ingest data from two or three external data sources at most.

Inevitably, this means that there are several data sources available in Power Query in

Excel that you will not be seeing in this book. However, as I have mentioned, one of the

fundamental advantages of Power Query is that once you have learned how to connect

to a couple of data sources, you have learned how to use pretty nearly all of them.

So, there are a handful of data sources that I am not covering in this book. They

include

•	 Azure Data Lake

•	 SharePoint (on-premises and online)

•	 Microsoft Exchange (on-premises and online)

•	 Microsoft Dynamics online

•	 Active Directory

•	 Hadoop

•	 Azure HDInsight

•	 Facebook

Connecting to SharePoint, Exchange, Microsoft Dynamics, Azure HDInsight, or

Hadoop will mean, inevitably, that these are used by your organization—and that you

have the necessary access rights.

I prefer to add a word of warning if you are using Power Query in Excel to connect to

Azure HDInsight or Hadoop. These are “big data” sources and, as the moniker implies,

they can contain vast amounts of data. The sheer size of the data that they contain can

easily swamp Excel. Consequently, I advise you to read the next few chapters that explain

how to select and filter data before loading it before you attempt to connect to big data

sources.

Chapter 4 Loading Data from the Web and the Cloud

114

�Conclusion
In this chapter, you saw, briefly, how to retrieve data that you access using the Internet.

This can range from a table of data on a web page to a massive Azure Synapse Analytics

Data Warehouse. You may even need to access data held in Azure Blob Storage or in

an Azure Data Lake. Alternatively, perhaps you need to create reports based on your

Salesforce or MS Dynamics 365 data. In any case, Power Query can connect and access

the data available in these services and repositories.

Given the number of online sources, this chapter could only scratch the surface of

this range of potential data repositories. However, as Power Query is rigorous about

standardizing access to data, you should be able to apply the approaches you have

learned in this chapter to many other data services, both current and future.

Chapter 4 Loading Data from the Web and the Cloud

115
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_5

CHAPTER 5

Generic Data Sources
If you take a good look at the Get Data options, you will find that there are currently 40

data sources for which Power Query connectors are available. However, even this range

of connectors pales into insignificance when faced with the vast array of potential source

data repositories. So what can you do when faced with a source of external data that is

not among those currently available?

One solution is to use a generic data connector to access data stores that are not

directly accessible. To conclude our whistle-stop tour of some of the available source

data, then, this chapter will introduce you to

•	 ODBC data

•	 OLE DB data

•	 OData feeds

The only difficulty when using generic data connectors is that they are, well,

generic. This means that they take a “lowest common denominator” approach. This

can mean that

•	 You depend on external providers of third-party software.

•	 Documentation is sparse or incomprehensible to the nontechnical

user.

•	 You are on your own if you encounter any technical challenges.

Despite these caveats, the main generic connectors do, nonetheless, open up the

possibility of connecting to and ingesting data from an immense range of potential

sources of external data. So I always advise attempting to make these connections work

if you possibly can, as the results are often much simpler and better than attempting to

export source data as text or CSV files and then loading them.

https://doi.org/10.1007/978-1-4842-6018-0_5#ESM

116

If you wish to practice the ODBC and OLE DB connections described in this chapter,

you will need to have access to source data that has these connection types enabled.

In other words, you will need to have ODBC or OLE DB drivers already installed and

functioning.

�ODBC Sources
As you have seen in this book so far, Excel can connect to a wide range of data sources.

However, there will always be external applications for which there is no specific

connector built in to Excel.

This is where a generic solution called Open Database Connectivity (or ODBC)

comes into play. ODBC is a standard way to connect to data sources, most of which

are databases or structured like databases. Simply put, if an ODBC driver exists for the

application that you want to connect to, then you can load data from it into Excel.

Hundreds of ODBC drivers have been written. Some are freely available; others

require you to purchase a license. They exist for a wide spectrum of applications ranging

from those found on most PCs to niche products. Some products have an ODBC driver

that is installed with the application itself; others require you to download an ODBC

driver separately. Some ODBC drivers are freely distributed, whereas others require you

to purchase a license.

Although ODBC is designed as a standard way of accessing data in applications, each

ODBC driver is slightly different from every other ODBC driver. Consequently, you might

have to spend a little time learning the quirks of the interface for the driver that you want

to use with the application that you want to connect to.

In this section, we will use FileMaker Pro as a data source. This product is a desktop

and server database system that has been around for quite some time. However, there

is currently no specific Power Query connector for it. The good news is that FileMaker

Pro does have an ODBC driver. So we will use FileMaker Pro as an example of how to use

ODBC to connect to Excel using Power Query.

I have to add that I am not expecting you to install a copy (even if it is only a trial

copy) of FileMaker Pro and its companion ODBC driver to carry out this exercise. What I

do want to explain, however, is how you can use ODBC to connect to a data source where

an ODBC driver is available. So feel free to download and install FileMaker Pro and its

ODBC driver if you wish, but you will have to refer to the FileMaker Pro documentation

for an explanation of how to do this.

Chapter 5 Generic Data Sources

117

Assuming that you have an ODBC-compliant data source and a working ODBC

driver for this data source, here is one example of how to load data into Excel using

ODBC and Power Query:

	 1.	 Run the ODBC Data Source Administrator app. This is normally

in the folder C:\ProgramData\Microsoft\Windows\Start Menu\

Programs\Administrative Tools. Be sure to use the 64-bit version

if you are using 64-bit Excel or the 32-bit version if you are using

32-bit Excel.

	 2.	 Click the System DSN tab. You should see the dialog shown in

Figure 5-1.

	 3.	 Click Add. You will see the list of all currently installed ODBC

drivers on your computer. This should look something like the

dialog shown in Figure 5-2.

Figure 5-1.  The ODBC Data Source Administrator

Chapter 5 Generic Data Sources

118

	 4.	 Select the appropriate ODBC driver corresponding to the data

source that you want to connect to (FileMaker ODBC in this

example). If you cannot see the ODBC driver, you need to install—

or reinstall—the driver. Please consult the documentation for the

ODBC driver that you are using for these details.

	 5.	 Click Finish. The configuration dialog for the specific ODBC driver

that you have selected will appear. If you are using FileMaker Pro,

the dialog will look like Figure 5-3.

Figure 5-2.  The list of installed ODBC drivers

Chapter 5 Generic Data Sources

119

	 6.	 Click Next, and enter a name and a description for this particular

ODBC connection. This could look something like the dialog

shown in Figure 5-4.

Figure 5-3.  The FileMaker Pro ODBC configuration assistant

Figure 5-4.  Naming the ODBC connection for FileMaker Pro

Chapter 5 Generic Data Sources

120

	 7.	 Click Next and enter localhost as the hostname if you are using a

FileMaker trial version on your local computer. Otherwise, enter

the IP address of the FileMaker server. You should see the dialog

shown in Figure 5-5. This is specific to a particular ODBC driver, of

course. When using other drivers, the dialog will be different.

	 8.	 Click Next and select the database in FileMaker Pro that you want

to connect to. You will see the dialog shown in Figure 5-6 (if you

are not using FileMaker Pro—remember that these dialogs can

vary depending on the specific ODBC driver).

Figure 5-5.  Specifying the host for the ODBC data

Chapter 5 Generic Data Sources

121

	 9.	 Click Next. The ODBC configuration dialog will resume the

specifications for the connection. This could look something like

the one shown in Figure 5-7.

Figure 5-6.  Specifying the database for the ODBC data

Figure 5-7.  The ODBC connection confirmation dialog

Chapter 5 Generic Data Sources

122

	 10.	 Click Done. You will return to the ODBC Data Source

Administrator, where you will see the System DSN that you just

created. The ODBC Data Source Administrator dialog should look

something like the one shown in Figure 5-8.

	 11.	 Click OK. This will close the ODBC Data Source

Administrator dialog.

	 12.	 Launch Excel.

	 13.	 Click Get Data ➤ From Other Sources ➤ From ODBC. The From

ODBC dialog will appear.

	 14.	 Expand the list of available DSNs. The From ODBC dialog will look

something like the one in Figure 5-9.

Figure 5-8.  The ODBC Data Source Administrator dialog with an ODBC driver
configured

Chapter 5 Generic Data Sources

123

Figure 5-9.  The Excel From ODBC dialog to select an ODBC data source

	 15.	 Select the DSN that you created previously (FilemakerForPowerBI

in this example).

	 16.	 Click OK. The credentials dialog will appear.

	 17.	 Choose Windows integrated security or click Database on the left

and enter the user name that has permissions to connect using

the ODBC driver. The credentials dialog will look something like

the one in Figure 5-10.

Figure 5-10.  The ODBC driver security dialog

Chapter 5 Generic Data Sources

124

	 18.	 Click Connect. You will see the data that is available in the ODBC

data source in the Navigator window.

	 19.	 Select the table(s) that you want to load into Excel. Remember

to check the Select multiple items check box if you want to load

several tables at the same time.

	 20.	 Click Load to load the data from the ODBC source into Excel.

I realize that this process may seem a little laborious at first. Yet you have to

remember that you will, in all probability, only set up the ODBC connection once. After

that you can use it to connect to the source data as often as you want.

Tip O nce you have created an ODBC DSN, you can use it in multiple scenarios—
and with many different products—that require data from the source that you are
using ODBC to connect to. This means that the ODBC source I created here can be
used for Power Query in Excel, Power BI, and many other applications where you
need to access FileMaker Pro data.

You need to be aware that each and every ODBC driver is different. So the

appearance of the dialogs in steps 5 to 10 will vary slightly with each different ODBC

driver that you configure. The key elements will, nonetheless, always be the same.

They are

•	 Name the DSN

•	 Specify the host computer for the data

•	 Define the data repository (or database)

•	 Specify any credentials needed to access the data source

There is much more that could be written about creating and using ODBC

connections to load data into Excel—or indeed into any number of destination

applications. However, I will have to refer you to the wealth of available resources both

in print and online if you need to learn more about this particular technology. A good

starting point is the Microsoft documentation that explains the difference between

System, User, and File DSNs and describes many of the key elements that you might

need to know.

Chapter 5 Generic Data Sources

125

Note T he data source application (FileMaker Pro in this example) must be open
and/or running for an ODBC connection to work. Other ODBC sources could have
their own specific quirks.

As a final comment, I can only urge you to procure all the relevant documentation

for the ODBC driver that you intend to use with Power Query in Excel. Indeed, if you

are using an enterprise data source that uses ODBC drivers, you may have corporate

resources who can either assist or even configure ODBC for you.

�OLE DB Data Sources
OLE DB (short for Object Linking and Embedding, Database) is technically what is

known as an application programming interface (API). Less technically, it is a technique

for connecting to database sources in a generic manner.

So, in a somewhat similar fashion to ODBC, you can use OLE DB to connect to data

sources (which are often databases, although they can be other sources of data). Indeed,

you may find that OLE DB is a useful way to connect to a database even if another

method exists.

So, whatever the use that you find for OLE DB, it is well worth getting to know how

it works. In this example, I will use OLE DB to connect to SQL Server and a sample

database.

	 1.	 Open a new Excel application.

	 2.	 In the Data ribbon, click Get Data ➤ From Other Sources ➤ From

OLE DB. The From OLE DB dialog will appear.

	 3.	 Click Connect. The From OLE DB dialog will appear. It should

look like Figure 5-11.

Chapter 5 Generic Data Sources

126

	 4.	 If you have a fully working connection string, enter it in the

Connection string text box.

	 5.	 If you do not have a connection string, click the Build button. The

OLE DB Data Link Properties dialog will be displayed, as shown in

Figure 5-12.

Figure 5-12.  The OLE DB Data Link Properties dialog

Figure 5-11.  The From OLE DB dialog

Chapter 5 Generic Data Sources

127

	 6.	 Select the OLE DB data provider that you want to use. In this

example, it will be Microsoft OLE DB Provider for SQL Server.

Of course, you must select the OLE DB provider that you have

installed for the data source that you want to access.

	 7.	 Click Next. The Connection properties pane of the OLE DB Data

Link Properties dialog will appear.

	 8.	 Select an available SQL Server (or enter its name) from the “Select

or enter a server name” popup.

	 9.	 Select the type of security, and enter a user name and password

if you have selected to use a specific user name instead of using

Windows NT Integrated security.

	 10.	 Select the source database from the “Select the database on the

server” popup. The dialog will look something like the one shown

in Figure 5-13.

Figure 5-13.  The Connection properties of the OLE DB Data Link Properties
dialog

Chapter 5 Generic Data Sources

128

	 12.	 Click OK. Excel will build the connection string and insert it into

the From OLE DB dialog, as shown in Figure 5-15.

	 11.	 Click the Test Connection button to ensure that the connection is

valid. You should see the message in Figure 5-14.

Figure 5-15.  The From OLE DB dialog with a valid connection string

Figure 5-14.  The test connection alert

	 13.	 Click OK. The Navigator window will appear with the appropriate

data displayed.

	 14.	 Select the table(s) that you want to load.

	 15.	 Click Load to load the data into Excel.

Note I f this is a first connection to an OLE DB source, you may be asked for a
user name and password, as was the case with earlier examples in this chapter.

Steps 8 through 10 are specific to the SQL Server OLE DB driver. For other drivers,

these steps could be different.

Chapter 5 Generic Data Sources

129

You need to be aware that an OLE DB connection requires that the OLE DB driver (or

“provider”) is installed on the computer where you are running Excel. However, what is

really interesting is that an OLE DB connection can be reduced to a simple connection

string. So if you need to share the connection with other users, you can simply email

the connection string to them in many cases. Your colleagues can then simply paste the

connection string into the From OLE DB dialog in Excel. In other words (and using this

example as a model), you can simply send the following text to a coworker:

provider=SQLOLEDB.1;initial catalog=CarSalesData;data source=ADAM03\

SQLSERVER2016

They can use this string to connect to a specified database by pasting it into the

From OLE DB dialog. Equally, your IT department might be able to provide you with the

appropriate connection string that you can use directly.

There are other advantages to using OLE DB connections too. Specifically, you (or

your IT department) can provide an advanced level of configuration in the connection

string to speed up or otherwise improve the access to the data. This could be by

specifying a mirrored server that is to be used for reporting to relieve the pressure on a

main server, for instance. At this level the technical ramifications will depend on the OLE

DB data source as well as the driver used and are so manifestly wide-ranging that they

are outside the scope of this book.

�OData Feeds
OData is a short way of referring to the Open Data Protocol. This protocol allows web

clients to publish and edit resources, identified as URLs. The data that you connect to

using OData can be in a tabular format or indeed in different structures.

OData is something of a generic method of connecting to web-based data.

Consequently, each OData source could differ from others that you may have used

previously.

There are a multitude of OData sources that are available. Some are public, some

are only accessible if you have appropriate permissions. However, the access method

will always be broadly similar. Here, then, is an example of how to connect to an OData

sample source that Odata.org has made freely available (at least when this book went to

press):

Chapter 5 Generic Data Sources

http://odata.org

130

	 1.	 In the Excel Data ribbon, click Get Data ➤ From Other Sources ➤

From OData Feed. The OData feed dialog will appear.

	 2.	 Enter the URL that you are using to connect to the OData

source. In this example, I will use a publicly available OData

feed that you can find at https://services.odata.org/

TripPinRESTierService/People. The dialog should look like

Figure 5-16.

	 3.	 Click OK. The OData feed credentials dialog will appear. You can

see this in Figure 5-17.

Figure 5-17.  The OData feed credentials dialog

Figure 5-16.  The OData feed dialog

Chapter 5 Generic Data Sources

https://services.odata.org/TripPinRESTierService/People
https://services.odata.org/TripPinRESTierService/People

131

	 4.	 Select the type of credential from the available list on the left of

the dialog. In this example, anonymous credentials are accepted,

so you do not have to enter a user name or password. For other

services, you may well need to select the appropriate security

method on the left and then enter the required credentials.

	 5.	 Click Connect. The Navigator dialog will be displayed and will

show the data available using the specified URL. You can see the

data returned from this sample URL in Figure 5-18.

	 6.	 Click Load. The data will be loaded into a new Excel worksheet

and/or the data model, depending on the load configuration

options that you choose.

Note I nterestingly, Dynamics 365 Online uses OData as the connection method.

Figure 5-18.  Data returned from an OData feed in the Power Query Navigator

Chapter 5 Generic Data Sources

132

�OData Options
The OData feed dialog (rather like the From Web dialog that you saw earlier in this

chapter) also contains an Advanced button. Selecting this will expand the dialog to allow

you to add one or more URL parts to the URL. You can see this in Figure 5-19.

Note UR L parts can be parameterized in the Power Query Editor. I will explain
parameterization in Chapter 11.

�Refreshing Data
Loading data from databases and data warehouses only means that a snapshot of the

source data is copied into Excel. If the source data is updated, extended, or deleted, then

you will need to get the latest version of the data if you want your analyses to reflect the

current state of the data.

Essentially you have two options to do this:

•	 Refresh all the source data from all the data sources that you have

defined.

•	 Refresh one or more tables individually.

Figure 5-19.    The OData feed dialog Advanced options

Chapter 5 Generic Data Sources

133

�Refreshing the Entire Data in the Excel In-Memory Model
There is only one way to be certain that all your data is up to date. Refreshing the entire

data may take longer, but you will be sure that your Excel file contains the latest available

data from all the sources that you have connected to.

To carry out a complete refresh:

	 1.	 In the Home ribbon, click the Refresh button. The Queries &

Connections pane will show all the data sources that are currently

being refreshed. The Queries & Connections pane will look like

the one in Figure 5-20.

The data currently in any worksheets or the Power Pivot data model will be updated

to display the latest data available in the source.

Note A full data refresh can take quite a while if the source data is voluminous or
if the network connection is slow.

�Refreshing an Individual Query
If you are certain that only one or more tables need to be refreshed in your Excel data

model, then you can choose to refresh tables individually. To do this:

	 1.	 In the Queries & Connections pane, click the refresh icon for the

table that you want to refresh. This is illustrated in Figure 5-20.

The existing data for this table will be replaced with the latest data.

Figure 5-20.  The Refresh dialog

Chapter 5 Generic Data Sources

134

�Conclusion
In this chapter, you have learned that you can use generic data access connectors—

ODBC, OLE DB, and OData—to connect to sources of data for which there is not (yet) a

built-in Power Query connector. You also saw how to refresh the data in Excel.

This chapter concludes the set of five chapters that introduced you to some of

the many and varied data sources that you can use with Power Query in Excel. In the

course of these pages, you have seen how to load data from a selection of the available

sources. The good news is that Excel can read data from many more sources than those

we covered here. The even better news is that you can use the knowledge that you have

acquired to connect to any other available data source using the standardized Power

Query interface.

So I will not be describing any further data sources in this book. This is because

now that you have come to appreciate the core techniques that make up the extremely

accessible approach that Power Query takes to loading data into Excel, you can probably

load any of the connection types that are available without needing much more

information from me.

Now that you can find, access, and load the data you need into Excel, it is time to

move on to the next step. This means cleansing and restructuring the datasets so that

they suit your analytical requirements. Handling these challenges is the subject of the

next seven chapters.

Chapter 5 Generic Data Sources

135
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_6

CHAPTER 6

Structuring Imported Data
In the previous five chapters, you saw some of the ways in which you can find and load (or

connect to) data into either Excel worksheets or the Excel data model. Inevitably, this is the

first part of any process that you follow to extract, transform, and load data. Yet it is quite

definitely only a first step. Once the data is accessed using Power Query, you need to know

how to adapt it to suit your requirements in a multitude of ways. This is because not all data

is ready to be used immediately. Quite often, you have to do some initial work on the data

to make it more easily usable. Tweaking source data in Power Query is generally referred to

as data transformation, which is the subject of this chapter as well as the next three.

The range of transformations that Power Query offers is extensive and varied.

Learning to apply the techniques that Power Query makes available enables you to take

data as you find it, then cleanse it and push it back into either Excel worksheets or the

Excel data model as a series of coherent and structured data tables. Only then is it ready

to be used to create compelling analysis.

As it is all too easy to be overwhelmed (at least initially) by the extent of the data

transformation options that Power Query has to offer, I have grouped the possible

modifications into four categories. These categories are my own and are merely a

suggestion to facilitate understanding:

•	 Data transformation: This includes adding and removing columns

and rows, renaming columns, as well as filtering data.

•	 Data modification: This covers altering the actual data in the rows

and columns of a dataset.

•	 Extending datasets: This encompasses adding further columns,

possibly expanding existing columns into more columns or rows, and

adding calculations.

•	 Joining datasets: This involves combining multiple separate

datasets—possibly from different data sources—into a single dataset.

https://doi.org/10.1007/978-1-4842-6018-0_6#ESM

136

This chapter introduces you to the core data transformation techniques that you

can apply to shape each individual dataset that you have loaded. These transformations

include

•	 Renaming, removing, and reordering columns

•	 Removing groups or sets of rows

•	 Deduplicating datasets

•	 Sorting the data

•	 Excluding records by filtering the data

•	 Grouping records

In Chapter 7, you learn how to cleanse and modify data. In Chapter 8, you see how

to subset columns to extract part of the available data in a column, calculate columns,

merge data from separate queries, and add further columns containing different types

of calculations, and you learn about pivoting and unpivoting data. So, if you cannot find

what you are looking for in this chapter, there is a good chance that the answer is in the

following two chapters.

In this chapter, I will also use a set of example files that you can find on the Apress

website. If you have followed the instructions in Appendix A, then these files are in the

C:\DataMashupWithExcelSamples folder.

Extending Queries in Power Query
In Chapter 1, you saw how to load external source data directly into Excel for reporting

and analysis. Clearly, this approach presumes that the data that you are using is perfectly

structured, clean, and error-free. Source data is nearly always correct and ready to use

in analytics when it comes from “corporate” data sources such as data warehouses (held

in relational, dimensional, or tabular databases). This is not always the case when you

are faced with multiple disparate sources of data that have not been precleansed and

prepared for you. The everyday reality is that you could have to cleanse and transform

much of the source data that you will use in Excel.

The really good news is that the kind of data transformation that used to require

expensive servers and industrial-strength software is now available for free. Yes, Power

Query is an awesome ETL (Extract, Transform, and Load) tool that can rival many

applications that cost hundreds of thousands of dollars.

Chapter 6 Structuring Imported Data

137

Power Query data transformation is carried out using queries. As you saw in previous

chapters, you do not have to modify source data. You can load it directly if it is ready

for use. Yet if you need to cleanse the data, you add an intermediate step between

connecting the data and loading it into the Excel data model. This intermediate step uses

the Power Query Editor to tweak the source data.

So how do you apply queries to transform your data? You have two choices:

•	 Load the data first from one or more sources, and then transform it

later.

•	 Edit each source data element in a query before loading it.

Power Query is extremely forgiving. It does not force you to select one or the other

method and then lock you into the consequences of your decision. You can load data

first and then realize that it needs some adjustment, switch to the Query Editor and

make changes, and then return to extending a spreadsheet based on this data. Or you

can first focus on the data and try to get it as polished and perfect as possible before you

start building reports. The choice is entirely up to you.

To make this point, let’s take a look at both of these ways of working.

Note A t risk of being pedantic and old-fashioned, I would advise you to make
notes when creating really complex transformations, because going back to a
solution and trying to make adjustments later can be painful when they are not
documented at all.

Editing Data After a Data Load
In Chapter 1, you saw how to load the Excel workbook CarSales.xlsx directly into Excel

for use in further analysis. Now let’s presume that you want to make some changes to the

data structure of the data that you have already loaded. Specifically, you want to rename

the CostPrice column. The file that you want to modify is Chapter06Sample1.xlsx file in

the C:\DataMashupWithExcelSamples directory.

	 1.	 Launch Excel.

	 2.	 Open the Excel file C:\DataMashupWithExcelSamples\

Chapter06Sample1.xlsx. You can see the sample data already

loaded into a worksheet.

Chapter 6 Structuring Imported Data

138

	 3.	 Click Data ➤ Queries & Connections. You will now also see the

query that carried out this load process (BaseData) in the Queries

& Connections pane in Figure 6-1.

Figure 6-1.  An initial data load

	 4.	 In the Queries & Connections pane on the right, double-click the

connection BaseData. This will connect to—and open—Power

Query. The Power Query window will look like the one in

Figure 6-2. You may see an alert dialog telling you that you are

connecting to an as yet unknown external data source. In this

case, click OK.

Chapter 6 Structuring Imported Data

139

Figure 6-2.  The Power Query Editor

	 5.	 Right-click the title of the CostPrice column (do not click the

arrow to the right of the column). The column will be selected.

	 6.	 Select Rename from the context menu. You can see the context

menu in Figure 6-3.

Chapter 6 Structuring Imported Data

140

	 7.	 Type VehicleCost and press Enter. The column title will change to

VehicleCost.

	 8.	 In the Power Query Editor Home ribbon, click the Close & Load

button. The Power Query Editor will close and return you to Excel

where the source data has been loaded into a new worksheet.

I hope that this simple example makes it clear that transforming the source data is

a quick and painless process. The technique that you applied—renaming a column—is

only one of many dozens of possible techniques that you can apply to transform your

data. However, it is not the specific transformation that is the core idea to take away here.

What you need to remember is that the data that underpins your analytics is always

present and it is only a click away. At any time, you can “flip” to the data and make

changes, simply by double-clicking the relevant query in the Queries & Connections

pane. Any changes that you make and confirm will update your data in Excel almost

instantaneously.

Figure 6-3.  The column context menu in the Query Editor

Chapter 6 Structuring Imported Data

141

Transforming Data Before Loading
On some occasions, you might prefer to juggle with your data before you load it. This is

a variation on the approach that you have used in Chapter 2 when loading data using

the Query Editor. Do the following to transform your data before it appears in the Excel

window:

	 1.	 Open a new Excel workbook.

	 2.	 In the Data ribbon, click the tiny triangle in the Get Data button.

	 3.	 Select From File ➤ From Workbook and click Import for the Excel

file C:\DataMashupWithExcelSamples\CarSales.xlsx.

	 4.	 In the Navigator window, select the CarData worksheet.

	 5.	 Click the Transform data button (not the Load button).

	 6.	 The Power Query Editor will open and display the source data as a

table.

	 7.	 Carry out steps 4 through 6 from the previous example to rename

the CostPrice column.

	 8.	 In the Power Query Editor Home ribbon, click the Close & Load

button. The Power Query Editor will close and return you to the

Excel window.

This time, you have made a simple modification to the data before loading the

dataset into Excel. The data modification technique was exactly the same. The only

difference between loading the data directly and taking a detour via Power Query was

clicking Edit Data instead of Load in the Navigator dialog. This means that the data was

only loaded once you had finished making any modifications to the source data in the

Power Query Editor.

Query or Load?
Excel always gives you the choice of loading data directly or taking a constructive detour

via Power Query. The path that you follow is entirely up to you and clearly depends on

each set of circumstances. Nonetheless, you might want to consider the following basic

principles when faced with a new challenge using unfamiliar data:

Chapter 6 Structuring Imported Data

142

•	 Are you convinced that the data is ready to use? That is, is it clean and

well structured? If so, then you can try loading it directly into Excel.

•	 Are you faced with multiple data sources that need to be combined

and molded into a coherent structure? If this is the case, then you

really need to transform the data using the Power Query Editor.

•	 Does the data come from an enterprise data warehouse or a

coherently structured external source? This could be held in a

relational database, a SQL Server Analysis Services cube, an in-

memory tabular data warehouse, or a cloud-based service. As these

data sources are nearly always the result of many hundreds—or even

thousands—of hours of work cleansing, preparing, and structuring

the data, you can probably load these straight into the data model or

an Excel worksheet.

•	 Does the data need to be preaggregated and filtered? Think Power

Query.

•	 Are you likely to need to change the field names to make the data

more manageable? It could be simpler to change the field names in

the Query Editor.

•	 Are you faced with lots of lookup tables that need to be added to a

“core” data table? Then Power Query is your friend.

•	 Does the data contain many superfluous or erroneous elements?

Then use Power Query to remove these as a first step.

•	 Does the data need to be rationalized and standardized to make it

easier to handle? In this case, the path to success is via the Power

Query Editor.

•	 Is the data source enormous? If this is the case, you could save time

by editing and subsetting and filtering the data first in the Power

Query Editor. This is because the Power Query Editor only loads a

sample of the data for you to tweak. The entire dataset will only be

loaded when you confirm all your modifications and close the Query

Editor.

Chapter 6 Structuring Imported Data

143

These kinds of questions are only rough guidelines. Yet they can help to point you

in the right direction when you are working with Power Query. Inevitably, the more that

you work with this application, the more you will develop the reflexes and intuition that

will help you make the correct decisions. Remember, however, that Power Query is there

to help and that even a directly loaded dataset is based on a query. So you can always

load data and then decide to tweak the query structure later if you need to. Alternatively,

editing data in a Query window can be a great opportunity to take a closer look at your

data before loading it into Excel—and it only adds a couple of clicks.

This all means that you are free to adopt a way of working that you feel happy with.

Power Query will adapt to your style easily and almost invisibly, letting you switch from

data to Excel so fluidly that it will likely become second nature.

The remainder of this chapter will take you through some of the core techniques that

you need to know to cleanse and shape your data. However, before getting into all the detail,

let’s take a quick, high-level look at the Power Query Editor and the way that it is laid out.

The Power Query Editor
All of your data transformation will take place in the Power Query Editor. It is a separate

window from the Excel interface that you are used to, and it has a slightly different layout.

The Power Query Editor consists of six main elements:

•	 The four principal ribbons: Home, Transform, Add Column, and

View. Other ribbons are available when carrying out specific types of

data transformations.

•	 The Query list pane containing all the queries that have been added

to an Excel file.

•	 The Data window, where you can see a sample of the data for a

selected query.

•	 The Query Settings pane that contains the list of steps used to

transform data.

•	 The formula bar above the data that shows the code (written in the

“M” language that you will discover in Chapter 12) that performs the

selected transformation step.

Chapter 6 Structuring Imported Data

144

•	 The status bar (at the bottom of the window) that indicates useful

information, such as the number of rows and columns in a query

table and the date when the dataset was downloaded

The callouts for these elements are shown in Figure 6-4.

Note I f you do not see the formula bar, just click View ➤ Formula Bar in the
Power Query Editor menu.

The Applied Steps List
Data transformation is by its very nature a sequential process. So the Query window

stores each modification that you make when you are cleansing and shaping source

data. The various elements that make up a data transformation process are listed in the

Applied Steps list of the Query Settings pane in the Power Query Editor.

Figure 6-4.  The Power Query Editor, explained

Chapter 6 Structuring Imported Data

145

The Power Query Editor does not number the steps in a data transformation process,

but it certainly remembers each one. They start at the top of the Applied Steps list (nearly

always with the Source step) and can extend to dozens of individual steps that trace

the evolution of your data until you load it into the data model. You can, if you want,

consider the Query Editor as a kind of “macro recorder.”

Moreover, as you click each step in the Applied Steps list, the data in the Data

window changes to reflect the results of each transformation, giving you a complete and

visible trail of all the modifications that you have applied to the dataset.

The Applied Steps list gives a distinct name to the step for each and every data

modification option that you cover in this chapter and the next. As it can be important

to understand exactly what each function actually achieves, I will always draw to your

attention the standard name that Power Query applies.

The Power Query Editor Ribbons
Power Query Editor uses four core ribbons. They are fundamental to what you learn in

the course of this chapter. They are as follows:

•	 The Home ribbon

•	 The Transform ribbon

•	 The Add Column ribbon

•	 The View ribbon

I am not suggesting for a second that you need to memorize what all the buttons in

these ribbons do. What I hope is that you are able to use the following brief descriptions

of the Query Editor ribbon buttons to get an idea of the amazing power of Power Query

in the field of data transformation. So if you have an initial dataset that is not quite as you

need it, you can take a look at the resources that Power Query has to offer and how they

can help. Once you find the function that does what you are looking for, you can jump to

the relevant section for the full details on how to apply it.

The Home Ribbon

Since we will be making intense use of the Power Query Editor Home ribbon to

transform data, it is important to have an idea of what it can do. I explain the various

options in Figure 6-5 and in Table 6-1.

Chapter 6 Structuring Imported Data

146

Figure 6-5.  The Query Editor Home ribbon

Table 6-1.  Query Editor Home Ribbon Options

Option Description

Close & Load Finishes the processing steps; saves and closes the query

Refresh Preview Refreshes the preview data

Query Management Lets you delete, duplicate, or reference a query

Manage Columns Lets you select the columns to retain from all the columns available in the

source data or remove one or more columns

Reduce Rows Keeps or removes the specified number of rows at the top or bottom of the

table

Sort Sorts the table using the selected column as the sort key

Split Column Separates the column into two or more separate columns

Group By Groups and potentially aggregates the data

Data Type Sets the column data type

Use First Row as

Headers

Promotes the first record as the header definitions

Replace Values Replaces values in a column with other values

Merge Queries Joins data from two separate queries

(continued)

Chapter 6 Structuring Imported Data

147

The Transform Ribbon

The Transform ribbon, as its name implies, contains a wealth of functions that can help

you to transform your data. The various options it contains are explained in Figure 6-6

and Table 6-2.

Option Description

Append Queries Adds data from one or more queries into another identically structured

query

Combine Files Merges all files in a given column into a single table

Manage Parameters Lets you view and modify any parameters defined for this ETL process in

Power Query

Data Source Settings Allows you to manage and edit settings for data sources that you have

already connected to

New Query Allows you to connect to additional external data or reuse existing

connections

Table 6-1.  (continued)

Figure 6-6.  The Query Editor Transform ribbon

Chapter 6 Structuring Imported Data

148

Table 6-2.  Query Editor Transform Ribbon Options

Option Description

Group By Groups the table using a specified set of columns; aggregates any numeric

columns for this grouping

Use First Row As

Headers

Uses the first row as the column titles

Transpose Transforms the columns into rows and the rows into columns

Reverse Rows Displays the source data in reverse order, showing the final rows at the top of the

window

Count Rows Counts the rows in the table and replaces the data with the row count

Data Type Applies the chosen data type to the column

Detect Data Type Detects the correct data type to apply to multiple columns

Rename Renames a column

Replace Values Carries out a search-and-replace operation inside a column, replacing a specified

value with another value

Fill Copies the data from cells above or below into empty cells in the column

Pivot Column Creates a new set of columns using the data in the selected column as the

column titles

Unpivot Columns Takes the values in a set of columns and unpivots the data, creating new

columns using the column headers as the descriptive elements

Move Moves a column

Convert to List Converts the contents of a column to a list. This can be used, for instance, as

query parameters

Split Column Splits a column into one or many columns at a specified delimiter or after a

specified number of characters

Format Modifies the text format of data in a column (uppercase, lowercase,

capitalization) or removes trailing spaces

Merge Columns Takes the data from several columns and places it in a single column, adding an

optional separator character

(continued)

Chapter 6 Structuring Imported Data

149

Option Description

Extract Replaces the data in a column using a defined subset of the current data. You can

specify a number of characters to keep from the start or end of the column, set a

range of characters beginning at a specified character, or even list the number of

characters in the column

Parse Creates an XML or JSON document from the contents of an element in a column

Statistics Returns the Sum, Average, Maximum, Minimum, Median, Standard Deviation,

Count, or Distinct Value Count for all the values in the column

Standard Carries out a basic mathematical calculation (add, subtract, divide, multiply,

integer-divide, or return the remainder) using a value that you specify applied to

each cell in the column

Scientific Carries out a basic scientific calculation (square, cube, power of n, square root,

exponent, logarithm, or factorial) for each cell in the column

Trigonometry Carries out a basic trigonometric calculation (Sine, Cosine, Tangent, ArcSine,

ArcCosine, or ArcTangent) using a value that you specify applied to each cell in

the column

Rounding Rounds the values in the column either to the next integer (up or down) or to a

specified factor

Information Replaces the value in the column with simple information: Is Odd, Is Even, or

Positive/Negative

Date Isolates an element (day, month, year, etc.) from a date value in a column

Time Isolates an element (hour, minute, second, etc.) from a date/time or time value in

a column

Duration Calculates the duration from a value that can be interpreted as a duration in days,

hours, minutes, etc.

Expand Adds the (identically structured) data from another query to the current query

Aggregate Calculates the sum or product of numeric columns from another query and adds

the result to the current query

Extract Values Extracts the values of the contents of a column as a single text value

Table 6-2.  (continued)

Chapter 6 Structuring Imported Data

150

The Add Column Ribbon

The Add Column ribbon does a lot more than just add columns. It also contains

functions to break columns down into multiple columns and to add columns containing

dates and calculations based on existing columns. The various options it contains are

explained in Figure 6-7 and Table 6-3.

Figure 6-7.  The Query Editor Add Column ribbon

Table 6-3.  Query Editor Add Column Ribbon Options

Option Description

Column From Examples Lets you use one or more columns as examples to create a new column

Custom Column Adds a new column using a formula to create the column’s contents

Invoke Custom Function Applies an “M” language function to every row

Conditional Column Adds a new column that conditionally adds the values from the selected

column

Index Column Adds a sequential number in a new column to uniquely identify each

row

Duplicate Column Creates a copy of the current column

Format Modifies the text format of data in a new column (uppercase,

lowercase, capitalization) or removes trailing spaces

Merge Columns Takes the data from several columns and places it in a single column,

adding an optional separator character

(continued)

Chapter 6 Structuring Imported Data

151

Option Description

Extract Creates a new column using a defined subset of the current data. You

can specify a number of characters to keep from the start or end of the

column, set a range of characters beginning at a specified character, or

even list the number of characters in the column

Parse Creates a new column based on the XML or JSON in a column

Statistics Creates a new column that returns the Sum, Average, Maximum,

Minimum, Median, Standard Deviation, Count, or Distinct Value Count

for all the values in the column

Standard Creates a new column that returns a basic mathematical calculation

(add, subtract, divide, multiply, integer-divide, or return the remainder)

using a value that you specify applied to each cell in the column

Scientific Creates a new column that returns a basic scientific calculation

(square, cube, power of n, square root, exponent, logarithm, or factorial)

for each cell in the column

Trigonometry Creates a new column that returns a basic trigonometric calculation

(Sine, Cosine, Tangent, ArcSine, ArcCosine, or ArcTangent) using a value

that you specify applied to each cell in the column

Rounding Rounds the values in a new column either to the next integer (up or

down) or to a specified factor

Information Replaces the value in the column with simple information: Is Odd, Is

Even, or Positive/Negative

Date Isolates an element (day, month, year, etc.) from a date value in a new

column

Time Isolates an element (hour, minute, second, etc.) from a date/time or

time value in a new column

Duration Calculates the duration from a value that can be interpreted as a

duration in days, hours, minutes, and seconds in a new column

Table 6-3.  (continued)

Chapter 6 Structuring Imported Data

152

The View Ribbon

The View ribbon lets you alter some of the Query Editor settings and see the underlying

data transformation code. The various options that it contains are explained in the next

chapter.

Dataset Shaping
So you are now looking at a data table that you have loaded into Excel. For argument’s

sake, let’s assume that it is the C:\DataMashupWithExcelSamples\Chapter06Sample1.

xlsx file from the sample data directory and that you have double-clicked the BaseData

query in the Queries & Connections pane to display the Power Query Editor. What can

you do to the BaseData dataset that is now visible? It is time to take a look at some of

the core techniques that you can apply to shape the initial dataset. These include the

following:

•	 Renaming columns

•	 Reordering columns

•	 Removing columns

•	 Merging columns

•	 Removing records

•	 Removing duplicate records

•	 Filtering the dataset

I have grouped these techniques together as they affect the initial size and shape

of the data. Also, it is generally not only good practice but also easier for you, the data

modeler, if you begin by excluding any rows and columns that you do not need. I also

find it easier to understand datasets if the columns are logically laid out and given

comprehensible names from the start. All in all, this makes working with the data easier

in the long run.

Chapter 6 Structuring Imported Data

153

Renaming Columns
Although we took a quick look at renaming columns in the first pages of this chapter, let’s

look at this technique again in more detail. I admit that renaming columns is not actually

modifying the form of the data table. However, when dealing with data, I consider it

vital to have all data clearly identifiable. This implies meaningful column names being

applied to each column. Consequently, I consider this modification to be fundamental

to the shape of the data and also as an essential best practice when importing source

data.

To rename a column:

	 1.	 Click inside (or on the column header for) the column that you

want to rename.

	 2.	 Click Transform to activate the Transform ribbon.

	 3.	 Click the Rename button. The column name will be highlighted.

	 4.	 Enter the new name or edit the existing name.

	 5.	 Press Enter or click outside the column title.

The column will now have a new title. The Applied Steps list on the right will now

contain another element, Renamed Columns. This step will be highlighted.

Note A s an alternative to using the Transform ribbon, you can right-click the
column title and select Rename.

Reordering Columns
Power Query will load data as it is defined in the data source. Consequently, the column

sequence will be entirely dependent on the source data (or by a SQL query if you used a

source database, as described in Chapter 3). This column order need not be definitive,

however, and you can reorder the columns if that helps you understand and deal with

the data. Do the following to change column order:

Chapter 6 Structuring Imported Data

154

	 1.	 Click the header of the column you want to move.

	 2.	 Drag the column left or right to its new position. You will see the

column title slide laterally through the column titles as you do

this, and a thicker gray line will indicate where the column will be

placed once you release the mouse button. Reordered Columns

will appear in the Applied Steps list.

Figure 6-8 shows this operation.

Figure 6-8.  Reordering columns

If your query contains dozens—or even hundreds—of columns, you may find that

dragging a column around can be slow and laborious. Equally, if columns are extremely

wide, it can be difficult to “nudge” a column left or right. Power Query can come to your

aid in these circumstances with the Move button in the Transform ribbon. Clicking this

button gives you the menu options that are outlined in Table 6-4.

Chapter 6 Structuring Imported Data

155

The Move command also works on a set of columns that you have selected by

Ctrl-clicking and/or Shift-clicking. Indeed, you can move a selection of columns that is

not contiguous if you need to.

Note  You need to select a column (or a set of columns) before clicking the Move
button. If you do not, then the first time that you use Move, Power Query selects
the column(s) but does not move it.

Removing Columns
So how do you delete a column or series of columns? Like this:

	 1.	 Click inside the column you want to delete, or if you want to delete

several columns at once, Ctrl-click the titles of the columns that

you want to delete.

	 2.	 Click the Remove Columns button in the Home ribbon. The

column(s) will be deleted and Removed Columns will be the latest

element in the Applied Steps list.

Tip A nother way to remove selected columns is to press the delete key. This will
also add a “Removed Columns” step to the Applied Steps list.

Table 6-4.  Move Button Options

Option Description

Left Moves the currently selected column to the left of the column on its immediate left

Right Moves the currently selected column to the right of the column on its immediate right

To Beginning Moves the currently selected column to the left of all the columns in the query

To End Moves the currently selected column to the right of all the columns in the query

Chapter 6 Structuring Imported Data

156

When working with imported datasets over which you have had no control, you may

frequently find that you only need a few columns of a large data table. If this is the case,

you will soon get tired of Ctrl-clicking numerous columns to select those you want to

remove. Power Query has an alternative method. Just select the columns you want to

keep and delete the others. To do this:

	 1.	 Ctrl-click the titles of the columns that you want to keep.

	 2.	 Click the small triangle in the Remove Columns button in the

Home ribbon. Select Remove Other Columns from the menu. All

unselected columns will be deleted and Removed Other Columns

will be added to the Applied Steps list.

When selecting a contiguous range of columns to remove or keep, you can use the

standard Windows Shift-click technique to select from the first to the last column in the

block of columns that you want to select.

Note  Both of these options for removing columns are also available from the
context menu, if you prefer. It shows Remove (or Remove Columns, if there are
several columns selected) when deleting columns, as well as Remove Other
Columns if you right-click a column title.

Choosing Columns
If you prefer not to scroll through a wide dataset, yet still need to select a subset of

columns as the basis for your reports, then there is another way to define the collection

of fields that you want to use. You can choose the columns that you want to keep (and, by

definition, those that you want to exclude) like this:

	 1.	 Open the sample file Chapter06Sample1.xlsx in the folder

C:\DataMashupWithExcelSamples unless it is already open.

	 2.	 In the Queries & Connections pane on the right (that you can toggle

on and off from the Data ribbon Queries & Connections option),

double-click the connection BaseData. The Query Editor will open.

	 3.	 In the Home ribbon of the Query Editor, click the Choose

Columns button.

Chapter 6 Structuring Imported Data

157

	 4.	 Click (Select All Columns) to deselect the entire collection of

columns in the dataset.

	 5.	 Select the columns Make, Model, Color, and SalePrice. The

Choose Columns dialog will look like the one in Figure 6-9.

	 6.	 Click OK. The Query Editor will only display the columns that you

selected.

The Choose Columns dialog comes with a couple of extra functions that you might

find useful when choosing the set of columns that you want to work with:

•	 You can sort the column list in alphabetical order (or, indeed, revert

to the original order) by clicking the Sort icon (the small A-Z) at the

top right of the Choose Columns dialog and selecting the required

option.

Figure 6-9.  The Choose Columns dialog

Chapter 6 Structuring Imported Data

158

•	 You can filter the list of columns that is displayed simply by entering a

few characters in the Search Columns field at the top of the dialog.

•	 The (Select All Columns) option switches between selecting and

deselecting all the columns in the list.

Merging Columns
Source data is not always exactly as you wish it could be (and that is sometimes a

massive understatement). Certain data sources could have data spread over many

columns that could equally well be merged into a single column. So it probably comes as

no surprise to discover that Power Query can carry out this kind of operation too. Here is

how to do it:

	 1.	 Ctrl-click the headers of the columns that you want to merge

(Make and Model in the BaseData dataset in this example).

	 2.	 In the Transform ribbon, click the Merge Columns button. The

Merge Columns dialog will be displayed.

	 3.	 From the Separator popup menu, select one of the available

separator elements. I chose Colon in this example.

	 4.	 Enter a name for the column that will be created from the two

original columns (I am calling it MakeAndModel). The dialog

should look like Figure 6-10.

Figure 6-10.  The Merge Columns dialog

Chapter 6 Structuring Imported Data

159

	 5.	 Click OK. The columns that you selected will be replaced by the

data from all the columns that you selected in step 1, as shown in

Figure 6-11.

	 6.	 Rename the resulting column (named Merged by Power Query).

I need to make a few comments about this process:

•	 You can select as many columns as you want when merging columns.

•	 If you do not give the resulting column a name in the Merge Columns

dialog, it will simply be renamed Merged. You can always rename it

later if you want.

•	 The order in which you select the columns affects the way that the

data is merged. So, always begin by selecting the column whose

data must appear at the left of the merged column, then the column

whose data should be next, and so forth. You do not have to select

columns in the order that they initially appeared in the dataset.

Figure 6-11.  The result of merging columns

Chapter 6 Structuring Imported Data

160

•	 If you do not want to use any of the standard separators that

Power Query suggests, you can always define your own. Just select

--Custom-- in the popup menu in the Merge Columns dialog. A new

box will appear in the dialog, in which you can enter your choice of

separator. This can be composed of several characters if you really

want.

•	 Merging columns from the Transform ribbon removes all the

selected columns and replaces them with a single column. The

same option is also available from the Add Column ribbon—only in

this case, this operation adds a new column and leaves the original

columns in the dataset.

Note T his option is also available from the context menu if you right-click a
column title.

The available merge separators are described in Table 6-5.

Tip  You can split, remove, and duplicate columns using the context menu if you
prefer. Just remember to right-click the column title to display the correct context
menu.

Table 6-5.  Merge Separators

Option Description

Colon Uses the colon (:) as the separator

Comma Uses the comma (,) as the separator

Equals Sign Uses the equals sign (=) as the separator

Semi-Colon Uses the semicolon (;) as the separator

Space Uses the space () as the separator

Tab Uses the tab character as the separator

Custom Lets you enter a custom separator

Chapter 6 Structuring Imported Data

161

Moving to a Specific Column
Power Query can load datasets that contain hundreds of columns. As scrolling left and

right across dozens of columns can be more than a little frustrating, you can always jump

to a specific column at any time.

	 1.	 In the Home ribbon of the Query Editor, click the small triangle at

the bottom of the Choose Columns button. Select Go to Column.

The Go to Column dialog will appear.

	 2.	 Select the column you want to move to. The dialog will look like

Figure 6-12.

	 3.	 Click OK. Power Query will select the chosen column.

Figure 6-12.  The Go to Column dialog

Chapter 6 Structuring Imported Data

162

Tip I f you prefer, you can double-click a column name in the Go to Column dialog
to move to the chosen column.

Removing Records
You may not always need all the data that you have loaded into a Power Query. There

could be several possible reasons for this:

•	 You are taking a first look at the data, and you only need a sample to

get an idea of what the data is like.

•	 The data contains records that you clearly do not need and that you

can easily identify from the start.

•	 You are testing data cleansing and you want a smaller dataset to

really speed up the development of a complex data extraction and

transformation process.

•	 You want to analyze a reduced dataset to extrapolate theses and

inferences, and to save analysis on a full dataset for later, or even use

a more industrial-strength toolset such as SQL Server Integration

Services.

To allow you to reduce the size of the dataset, Power Query proposes two basic

approaches out of the box:

•	 Keep certain rows

•	 Remove certain rows

Inevitably, the technique that you adopt will depend on the circumstances. If it is

easier to specify the rows to sample by inclusion, then the keep-certain-rows approach is

the best option to take. Inversely, if you want to proceed by exclusion, then the remove-

certain-rows technique is best. Let’s look at each of these in turn.

Chapter 6 Structuring Imported Data

163

Keeping Rows
This approach lets you specify the rows that you want to continue using. It is based on

the application of one of the following three choices:

•	 Keep the top n records.

•	 Keep the bottom n records.

•	 Keep a specified range of records—that is, keep n records every y

records.

Most of these techniques are very similar, so let’s start by imagining that you

want to keep the top 50 records in the sample C:\DataMashupWithExcelSamples\

Chapter06Sample1.xlsx file.

	 1.	 Open the source file and then open the Power Query Editor by

double-clicking the BaseData query in the Queries & Connections

pane.

	 2.	 In the Home ribbon of the Query Editor, click the Keep Rows

button. The menu will appear.

	 3.	 Select Keep Top Rows. The Keep Top Rows dialog will appear.

	 4.	 Enter 50 in the “Number of rows” box, as shown in Figure 6-13.

Figure 6-13.  The Keep Top Rows dialog

	 5.	 Click OK. All but the first 50 records are deleted and Kept First

Rows is added to the Applied Steps list.

Chapter 6 Structuring Imported Data

164

To keep the bottom n rows, the technique is virtually identical. Follow the steps in

the previous example, but select Keep Bottom Rows in step 2. In this case, the Applied

Steps list displays Kept Last Rows.

To keep a range of records, you need to specify a starting record and the number

of records to keep from then on. For instance, suppose that you wish to lose the first 10

records but keep the following 25. This is how to go about it:

	 1.	 In the Home ribbon, click the Keep Rows button.

	 2.	 Select Keep Range of Rows. The Keep Range of Rows dialog will

appear.

	 3.	 Enter 11 in the “First row” box.

	 4.	 Enter 25 in the “Number of rows” box, as shown in Figure 6-14.

	 5.	 Click OK. All but records 1–10 and 36 to the end are deleted and

Kept Range of Rows is added to the Applied Steps list.

Removing Rows

Removing rows is a nearly identical process to the one you just used to keep rows. As

removing the top or bottom n rows is highly similar, I will not go through it in detail.

All you have to do is click the Remove Rows button in the Home ribbon and follow the

process as if you were keeping rows. The Applied Steps list will read Removed Top Rows

or Removed Bottom Rows in this case, and rows will be removed instead of being kept in

the dataset, of course.

Figure 6-14.  The Keep Range of Rows dialog

Chapter 6 Structuring Imported Data

165

The remove rows approach does have one very useful option that can be applied as

a sampling technique. It allows you to remove one or more records every few records to

produce a subset of the source data. To do this, you need to do the following:

	 1.	 Click the Remove Rows button in the Query window Home

ribbon. The menu will appear.

	 2.	 Select Remove Alternate Rows. The Remove Alternate Rows dialog

will appear.

	 3.	 Enter 10 as the First row to remove.

	 4.	 Enter 2 as the Number of rows to remove.

	 5.	 Enter 10 as the Number of rows to keep.

The dialog will look like Figure 6-15.

	 6.	 Click OK. All but the records matching the pattern you entered in

the dialog are removed. Removed Alternate Rows is then added to

the Applied Steps list.

Note I f you are really determined to extract a sample that you consider to
be representative of the key data, then you can always filter the data before
subsetting it to exclude any outliers. Filtering data is explained later in this chapter.

Figure 6-15.  The Remove Alternate Rows dialog

Chapter 6 Structuring Imported Data

166

Removing Blank Rows

If your source data contains completely blank (empty) rows, you can delete these as

follows:

	 1.	 Click the Remove Rows button in the Query window Home

ribbon. The menu will appear.

	 2.	 Select Remove Blank Rows.

This results in empty rows being deleted. Removed Blank Rows is then added to the

Applied Steps list.

Removing Duplicate Records
An external source of data might not be quite as perfect as you might hope. One of the

most annoying features of poor data is the presence of duplicates. These are insidious

since they falsify results and are not always visible. If you suspect that the data table

contains strict duplicates (i.e., where every field is identical in two or more records), then

you can remove the duplicates like this:

	 1.	 Click the Remove Duplicates in the popup menu for the table (this

is at the top left of the table grid). All duplicate records are deleted

and Removed Duplicates is added to the Applied Steps list.

Note I must stress that this approach will only remove completely identical
records where every element of every column is strictly identical in the duplicate
rows. If two records have just one different character or a number but everything
else is identical, then they are not considered duplicates by Power Query.
Alternatively, if you want to isolate and examine the duplicate records, then you
can display only completely identical records by selecting Keep Duplicates from
the popup menu for the table.

So if you suspect or are sure that the data table you are dealing with contains

duplicates, what are the practical solutions? This can be a real conundrum, but there are

some basic techniques that you can apply:

Chapter 6 Structuring Imported Data

167

•	 Remove all columns that you are sure you will not be using later in

the data-handling process. This way, Power Query will only be asked

to compare essential data across potentially duplicate records.

•	 Group the data on the core columns (this is explained later in this

chapter).

Note A s you have seen, Power Query can help you to home in on the essential
elements in a dataset in just a few clicks. If anything, you need to be careful that
you are not removing valuable data—and consequently skewing your analysis—
when excluding data from the query.

Sorting Data
Although not strictly a data modification step, sorting an imported table will probably be

something that you want to do at some stage, if only to get a clearer idea of the data that

you are dealing with. Do the following to sort the data:

	 1.	 Open the sample file Chapter06Sample1.xlsx in the folder

C:\DataMashupWithExcelSamples unless it is already open.

	 2.	 In the Queries & Connections pane on the right, double-click the

connection BaseData. The Query Editor will open.

	 3.	 Click inside the column you wish to sort by.

	 4.	 Click Sort Ascending (the A/Z icon) or Sort Descending (the Z/A

icon) in the Home ribbon.

The data is sorted in either alphabetical (smallest to largest) or reverse alphabetical

(largest to smallest) order. If you want to carry out a complex sort operation (i.e., first

by one column and then by another if the first column contains the same element over

several rows), you do this simply by sorting the columns one after another. Power Query

Editor adds a tiny 1, 2, 3, and so on to the right of the column title to indicate the sort

sequence. You can see this in Figure 6-16, where I sorted first on the column Make and

finally on the column Model.

Chapter 6 Structuring Imported Data

168

If you look closely at the column headings, you will see a small “1” and “2” that

indicate the sort priority as well as the arrows that indicate that the columns are sorted in

ascending order.

Note A n alternative technique for sorting data is to click the popup menu for a
column (the downward-facing triangle at the right of a column title) and select Sort
Ascending or Sort Descending from the popup menu.

Reversing the Row Order
If you find that the data that you are looking at seems upside down (i.e., with the bottom

rows at the top and vice versa), you can reverse the row order in a single click, if you

want. To do this, do the following:

In the Transform ribbon, click the Reverse Rows button.

The entire dataset will be reversed and the bottom row will now be the top row.

Undoing a Sort Operation
If you subsequently decide that you do not want to keep your data sorted, you can undo

the sort operation at any time, as follows:

	 1.	 Click the sort icon at the right of the name of the column that you

used as the basis for the sort operation. The context menu will

appear, as you can see in Figure 6-17.

Figure 6-16.  Sorting multiple columns

Chapter 6 Structuring Imported Data

169

	 2.	 Click Clear Sort.

The sort order that you applied will be removed, and the data will revert to its

original row order.

As sorting data is considered part of the data modification process, it also appears

in the Applied Steps list as Sorted Rows. This means that you can also remove a sort

operation by deleting the relevant step in the Applied Steps list.

Note I f you sorted the dataset on several columns, you can choose to remove
all the sort order that you applied by clicking the first column that you used to sort
the data. This will remove the sort order that you applied to all the columns that
you used to define the sort criteria. If all you want to do is undo the sort on the final
column in a set of columns used to sort the recordset, then you can clear only the
sort operation on this column.

Figure 6-17.  Removing a sort operation

Chapter 6 Structuring Imported Data

170

Filtering Data
The most frequently used way of limiting a dataset is, in my experience, the use of filters

on the table that you have loaded. Now, I realize that you may be coming to Power

Query after years with Excel, or after some time using Power Pivot, and that the filtering

techniques that you are about to see probably look much like the ones you have used in

those two tools. However, because it is fundamental to include and exclude appropriate

records when loading source data, I prefer to explain Power Query filters in detail, even if

this means that certain readers will experience a strong sense of déjà vu.

Here are two basic approaches for filtering data in Power Query:

•	 Select one or more specific values from the unique list of elements in

the chosen column.

•	 Define a range of data to include or exclude.

The first option is common to all data types, whether they are text, number, or date/

time. The second approach varies according to the data type of the column that you are

using to filter data.

Selecting Specific Text Values
Selecting one or more values present in a column of data is as easy as this (assuming that

you are still using the Excel file Chapter06Sample1.xlsx and are in the Query Editor):

	 1.	 Click a column’s popup menu. (I used Make in the sample dataset

Chapter06Sample1.xlsx here.) The filter menu appears.

	 2.	 Check all elements that you want to retain and uncheck all

elements that you wish to exclude. In this example, I kept Bentley

and Rolls Royce, as shown in Figure 6-18.

Chapter 6 Structuring Imported Data

171

	 3.	 Click OK. Filtered Rows is added to the Applied Steps list.

Note  You can deselect all items by clicking the (Select All) check box; reselect all
the items by selecting this box again. It follows that if you want to keep only a few
elements, it may be faster to unselect all of them first and then only select the ones
that you want to keep. If you want to exclude any records without a value in the
column that you are filtering on, then select Remove Empty from the filter menu.

Finding Elements in the Filter List
Scrolling up and down in a filter list can get extremely laborious. A fast way of limiting

the list to a subset of available elements is to do the following (assuming that you

are still in the Query Editor for the Excel file C:\DataMashupWithExcelSamples\

Chapter06Sample1.xlsx):

	 1.	 Click the popup menu for a column. (I use Model in the sample

dataset in this example.) The filter menu appears.

Figure 6-18.  A filter menu

Chapter 6 Structuring Imported Data

172

	 2.	 Enter a letter or a few letters in the Search box. The list shortens

with every letter or number that you enter. If you enter ar, then the

filter popup will look like Figure 6-19.

Figure 6-19.  Searching the filter menu

	 3.	 Select the elements that you want to filter on and click OK.

To remove a filter, all that you have to do is click the cross that appears at the right of

the Search box.

Filtering Text Ranges
If a column contains text, then you can apply specific options to filter the data. These

elements are found in the filter popup of any text-based column in the Text Filters

submenu. The choices are given in Table 6-6.

Chapter 6 Structuring Imported Data

173

Filtering Numeric Ranges
If a column contains numbers, then there are also specific options that you can apply to

filter the data. You’ll find these elements in the filter popup of any text-based column in

the Number Filters submenu. The choices are given in Table 6-7.

Table 6-6.  Text Filter Options

Filter Option Description

Equals Sets the text that must match the cell contents

Does Not Equal Sets the text that must not match the cell contents

Begins With Sets the text at the left of the cell contents

Does Not Begin With Sets the text that must not appear at the left of the cell contents

Ends With Sets the text at the right of the cell contents

Does Not End With Sets the text that must not appear at the right of the cell contents

Contains Lets you enter a text that will be part of the cell contents

Does Not Contain Lets you enter a text that will not be part of the cell contents

Table 6-7.  Numeric Filter Options

Filter Option Description

Equals Sets the number that must match the cell contents

Does Not Equal Sets the number that must not match the cell contents

Greater Than Cell contents must be greater than this number

Greater Than Or Equal To Cell contents must be greater than or equal to this number

Lesser Than Cell contents must be less than this number

Lesser Than Or Equal To Cell contents must be less than or equal to this number

Between Cell contents must be between the two numbers that you specify

Chapter 6 Structuring Imported Data

174

Filtering Date and Time Ranges
If a column contains dates or times (or both), then specific options can also be applied to

filter the data. These elements are found in the filter popup of any text-based column in

the Date/Time Filters submenu. The choices are given in Table 6-8.

Table 6-8.  Date and Time Filter Options

Filter Element Description

Equals Filters data to include only records for the selected date

Before Filters data to include only records up to the selected date

After Filters data to include only records after the selected date

Between Lets you set an upper and a lower date limit to exclude records outside

that range

In the Next Lets you specify a number of days, weeks, months, quarters, or years to come

In the Previous Lets you specify a number of days, weeks, months, quarters, or years up to

the date

Is Earliest Filters data to include only records for the earliest date

Is Latest Filters data to include only records for the latest date

Is Not Earliest Filters data to include only records for dates not including the earliest date

Is Not Latest Filters data to include only records for dates not including the latest date

Day ➤ Tomorrow Filters data to include only records for the day after the current system date

Day ➤ Today Filters data to include only records for the current system date

Day ➤ Yesterday Filters data to include only records for the day before the current system date

Week ➤ Next Week Filters data to include only records for the next calendar week

Week ➤ This Week Filters data to include only records for the current calendar week

Week ➤ Last Week Filters data to include only records for the previous calendar week

Month ➤ Next Month Filters data to include only records for the next calendar month

(continued)

Chapter 6 Structuring Imported Data

175

Filter Element Description

Month ➤ This Month Filters data to include only records for the current calendar month

Month ➤ Last Month Filters data to include only records for the previous calendar month

Month ➤ Month Name Filters data to include only records for the specified calendar month

Quarter ➤ Next Quarter Filters data to include only records for the next quarter

Quarter ➤ This Quarter Filters data to include only records for the current quarter

Quarter ➤ Last

Quarter

Filters data to include only records for the previous quarter

Quarter ➤ Quarter

Name

Filters data to include only records for the specified quarter

Year ➤ Next Year Filters data to include only records for the next year

Year ➤ This Year Filters data to include only records for the current year

Year ➤ Last Year Filters data to include only records for the previous year

Year ➤ Year To Date Filters data to include only records for the calendar year to date

Custom Filter Lets you set up a specific filter for a chosen date range.

Table 6-8.  (continued)

Filtering Numeric Data
Filtering data uses a globally similar approach, whatever the type of data that is being

filtered—text, numeric, logical, or date/time. As a simple example, here is how to apply

a number filter to the sale price to find vehicles that sold for less than £5,000.00 (once

again in the Query Editor for the file Chapter06Sample1.xlsx):

	 1.	 Click the popup menu for the SalePrice column.

	 2.	 Click Number Filters. The submenu will appear.

	 3.	 Select Less Than. The Filter Rows dialog will be displayed.

	 4.	 Enter 5000 in the box next to the “is less than” box, as shown in

Figure 6-20.

Chapter 6 Structuring Imported Data

176

	 5.	 Click OK. The dataset only displays rows that conform to the filter

that you have defined.

Although extremely simple to apply, filters do require a few comments:

•	 You can combine up to two elements in a basic filter. These can be

mutually inclusive (an AND filter) or they can be an alternative (an

OR filter).

•	 You can combine several elements in an advanced filter—as you will

learn in the next section.

•	 You should not apply any formatting when entering numbers.

•	 Any text that you filter on is not case-sensitive.

•	 If you choose the wrong type of filter (for instance, greater than rather

than less than), you do not have to cancel and start over. Simply

select the correct filter type from the popup in the left-hand boxes in

the Filter Rows dialog.

Tip I f you set a filter value that excludes all the records in the table, Power Query
displays an empty table except for the words “This table is empty.” You can always
remove the filter by clicking the cross to the left of Filtered Rows in the Applied
Steps list. This will remove the step and revert the data to its previous state.

Figure 6-20.  The Filter Rows dialog

Chapter 6 Structuring Imported Data

177

Applying Advanced Filters
Should you ever need to be extremely specific when filtering data, you can always use

Power Query’s advanced filters. These let you extend the filter elements so that you can

include or exclude records to a fine-grained level of detail. Here is the procedure in the

Query Editor for the file Chapter06Sample1.xlsx:

	 1.	 Click the popup menu for the SalePrice column.

	 2.	 Click Number Filters. The submenu will appear.

	 3.	 Select Equals. The Filter Rows dialog will be displayed.

	 4.	 Click Advanced.

	 5.	 Enter 5000 as the value for the first filter element in the dialog.

	 6.	 Select Or from the popup as the filter type for the second filter

element.

	 7.	 Select equals as the operator.

	 8.	 Enter 89000 as the value for the second filter in the dialog.

	 9.	 Click Add Clause. A new filter element will be added to the dialog

under the existing elements.

	 10.	 Select Or as the filter type and equals as the operator.

	 11.	 Enter 178500 as the value for the third filter element in the dialog.

The Filter Rows dialog will look like the one shown in Figure 6-21.

Chapter 6 Structuring Imported Data

178

	 12.	 Click OK. Only records containing the figures that you entered in

the Filter Rows dialog will be displayed in the Power Query Editor.

I would like to finish on the subject of filters with a few comments:

•	 In the Advanced filter dialog, you can “mix and match” columns and

operators to achieve the filter result that you are looking for.

•	 You can also order the sequence of filters if you ever need to. To

do this, simply click inside a filter row and it will appear with a

gray background (like the third filter in Figure 6-21). Then click the

ellipses at the right of the filter row and select Move Up or Move

Down from the popup menu. You can see this in Figure 6-22.

Figure 6-21.  Advanced filters

Figure 6-22.  Ordering filters

•	 To delete a filter, click the ellipses at the right of the filter row and

select Delete.

Chapter 6 Structuring Imported Data

179

Note  When you are dealing with really large datasets, you may find that a
filter does not always show all the available values from the source data. This is
because the Query Editor has loaded only a sample subset of the data. In cases
like these, you will see an alert in the filter popup menu and a “Load more” link.
Clicking this link will force Power Query to reload a larger sample set of data.
However, memory restrictions may prevent it from loading all the data that you
need. In cases like this, you should consider modifying the source query (if this is
possible, of course, such as when connecting to a database) so that it brings back
a representative dataset that can fit into memory.

Grouping Records
At times, you will need to transform your original data in an extreme way—by grouping

the data. This is very different from filtering data, removing duplicates, or cleansing the

contents of columns. When you group data, you are altering the structure of the dataset

to “roll up” records where you do the following:

•	 Define the attribute columns that will become the unique elements

in the grouped data table

•	 Specify which aggregations are applied to any numeric columns

included in the grouped table

Grouping is frequently an extremely selective operation. This is inevitable, since the

fewer attribute (i.e., nonnumeric) columns you choose to group on, the fewer records

you are likely to include in the grouped table. However, this will always depend on the

particular dataset you are dealing with, and grouping data efficiently is always a matter

of flair, practice, and good, old-fashioned trial and error.

Simple Groups
To understand how grouping works—and how it can radically alter the structure of your

dataset—let’s see a simple example of row grouping in action:

	 1.	 In Power Query for the sample file Chapter06Sample1.xlsx, click

inside the Make column.

Chapter 6 Structuring Imported Data

180

	 3.	 Click OK. The dataset will now only contain the list of makes of

vehicle and the number of records for each make. You can see this

in Figure 6-24.

Power Query will add a step named Grouped Rows to the Applied Steps list when

you apply grouping to a dataset.

	 2.	 In either the Home ribbon or Transform ribbon, click the Group

By button. The Group By dialog will appear, looking like the one in

Figure 6-23.

Figure 6-23.  Simple grouping

Figure 6-24.  Simple grouping output

Chapter 6 Structuring Imported Data

181

Complex Groups
Power Query can help you shape your datasets in more advanced ways by creating more

complex data groupings. As an example, you could try out the following to group by

make and model and add columns showing the total sales value and the average cost:

	 1.	 Open the sample file C:\DataMashupWithExcelSamples\

Chapter06Sample1.xlsx.

	 2.	 Double-click the BaseData Connection to open the Query Editor.

	 3.	 Select the following columns (by Ctrl-clicking the column headers):

	 a.	 Make

	 b.	 Model

Note T he best way to cancel a grouping operation is to delete the Grouped Rows
step in the Applied Steps list.

Although Power Query defaults to counting rows, there are several other operations

that you can apply when grouping data. These are outlined in Table 6-9.

Table 6-9.  Aggregation Operations When Grouping

Aggregation Operation Description

Count Rows Counts the number of records

Count Distinct Rows Counts the number of unique records

Sum Returns the total for a numeric column

Average Returns the average for a numeric column

Median Returns the median value of a numeric column

Min Returns the minimum value of a numeric column

Max Returns the maximum value of a numeric column

All Rows Creates a table of records for each grouped element

Chapter 6 Structuring Imported Data

182

	 4.	 In either the Home ribbon or Transform ribbon, click Group By.

	 5.	 In the New Column Name box, enter TotalSales.

	 6.	 Select Sum as the operation.

	 7.	 Choose SalePrice as the source column in the Column popup list.

	 8.	 Click the Add Aggregation button and repeat the operation, only

this time, use the following:

	 a.	 New Column Name: AverageCost

	 b.	 Operation: Average

	 c.	 Column: CostPrice

The Group By dialog should look like the one in Figure 6-25.

Figure 6-25.  The Group By dialog

Chapter 6 Structuring Imported Data

183

	 9.	 Click OK. All columns, other than those that you specified in

the Group By dialog, are removed, and the table is grouped and

aggregated, as shown in Figure 6-26. Grouped Rows will be added

to the Applied Steps list. I have also sorted the table by the Make

and Model columns to make the grouping easier to comprehend.

If you have created a really complex group and then realized that you need to change

the order of the columns, all is not lost. You can alter the order of the columns in the

output by clicking the ellipses to the right of each column definition in the Group By

dialog and selecting Move Up or Move Down. The order of the columns in the Group By

dialog will be the order of the columns (left to right) in the resulting dataset.

Figure 6-26.  Grouping a dataset

Chapter 6 Structuring Imported Data

184

Saving Changes in the Query Editor
Contrary to what you might expect, you cannot save any changes that you have made

when using the Power Query Editor at any time. Instead you must first exit the Query

Editor and then save the underlying Excel file as you would normally.

Exiting the Query Editor
In a similar vein to the Save options just described, you can choose how to exit the Query

Editor and return to your reports in Excel. The default option (when you click the Close

& Load button) is to apply all the changes that you have made to the data, update the

data model with the new data (if this option has been selected), and return to Excel.

Note  You do not have to Ctrl-click to select the grouping columns. You can add
them one by one to the Group By dialog by clicking the Add Aggregation button.
Equally, you can remove grouping columns (or added and aggregated columns) by
clicking the ellipses to the right of a column name and selecting Delete from the
popup menu.

Count Rows
One simple option that you may find useful in certain circumstances is the Count rows

function. This—as its name implies—displays the full number of rows available in the

source dataset.

	 1.	 In the Power Query Transform menu, click Count rows. The

number of records will appear in the place of the existing dataset

as shown in Figure 6-27.

Figure 6-27.  Returning the row count of a source dataset

Chapter 6 Structuring Imported Data

185

However, you have another option that may prove useful. This appears in the File menu

for the Query Editor.

	 1.	 In the Query Editor, click File.

	 2.	 Select Discard & Close. You can see this option in Figure 6-28.

If you choose not to apply the changes that you have made, then you will return

to the Excel workbook and lose any modifications you have made—without any

confirmation.

Conclusion
This chapter started you on the road to transforming datasets with Power Query. You saw

how to trim datasets by removing rows and columns. You also learned how to subset a

sample of data from a data source by selecting alternating groups of rows.

You also saw how to choose the columns that you want to use in Excel, how to move

columns around in the dataset, and how to rename columns so that your data is easily

comprehensible when you use it later as the basis for your analysis. Then, you saw how

to filter and sort data, as well as how to remove duplicates to ensure that your dataset

only contains the precise rows that you need for your upcoming visualizations. Finally,

you learned how to group and aggregate data.

Figure 6-28.  Discard modifications in Power Query

Chapter 6 Structuring Imported Data

186

It has to be admitted, nonetheless, that preparing raw data for use in analytics is not

always easy and can take a while to get right. However, Power Query can make this task

really easy with a little practice. So now that you have grasped the basics, it is time to

move on and discover some further data transformation techniques. Specifically, you

will see how to transform and potentially cleanse the data that you have imported. This

is the subject of the next chapter.

Chapter 6 Structuring Imported Data

187
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_7

CHAPTER 7

Data Transformation
Once a dataset has been filtered and shaped (as covered in the previous chapter),

it probably still needs a good few modifications to make it ready for consumption.

Many of these modifications are, at their heart, a series of fairly simple yet necessary

techniques that you apply to make the data cleaner and more standardized. I have

chosen to group these approaches under the heading data transformation.

The sort of things that you may be looking to do before finally loading source data

into the data model normally cover a range of processes that cleanse the data. They can

include the following:

•	 Change the data type for a column—by telling Power Query that the

column contains numbers, for example

•	 Ensure that the first row is used as headers (if this is required)

•	 Remove part of a column’s contents

•	 Replace the values in a cell with other values

•	 Transform the column contents—by making the text uppercase, for

instance, or by removing decimals from numbers

•	 Fill data down or up over empty cells to ensure that records are

complete

•	 Apply math or statistical (or even trigonometric) functions to

columns of numbers

•	 Convert date or time data into date elements such as days, months,

quarters, years, hours, or minutes

https://doi.org/10.1007/978-1-4842-6018-0_7#ESM

188

Transforming data does not only consist of reducing it. Sometimes you may have to

extend the data to make it usable. This normally means adding further columns to a data

table. The techniques to do this include

•	 Duplicating a column and possibly altering the format of the data in

the copied column

•	 Extracting part of the data in a column into a new column

•	 Separating all the multiple data elements in a column so that each

data element appears in a separate column

•	 Merging columns into a new column

•	 Adding custom columns that possibly contain calculations or extract

part of a column’s data into a new column or even concatenate columns

•	 Adding “index” columns that number the rows to ensure uniqueness

or memorize a sort order

This chapter will take you on a tour of these kinds of essential data transformations.

Once you have finished reading it, you should be confident that you can take a rough

and ready data source as a starting point and convert it into a polished and coherent data

table that is ready to become a pivotal part of your Excel analytics. Not only that, but you

will have carried out really heavy lifting much faster and more easily than you could have

done using enterprise-level tools or most of the Excel techniques that you know already.

The sample data that you will need to follow the exercises in this chapter is in the

folder C:\DataMashupWithExcelSamples.

�Viewing a Full Record
Before even starting to cleanse data, you probably need to take a good look at it. While

the Power Query Editor is great for scrolling up and down columns to see how data

compares for a single field, it is often less easy to appreciate the entire contents of a

single record.

So to avoid having to scroll frenetically left and right across rows of data, the

Power Query Editor has another brilliantly simple solution. If you click a row (or more

specifically, on the number of a row in the grid on the left), the Power Query Editor will

display the contents of an entire record in a single window under the dataset. You can

see an example of this in Figure 7-1.

Chapter 7 Data Transformation

189

Note  You can alter the relative height of the recordset and dataset windows
simply by dragging the gray separator line between the upper and lower windows
up or down.

�Power Query Editor Context Menus
As is normal for Windows programs, Power Query Editor makes full use of context (or

“right-click”) menus as an alternative to using the ribbons. When transforming datasets,

there are three main context menus that you will probably find yourself using:

•	 Table menu: This menu appears when you right-click the top corner

of the grid containing the data (or click the small triangle at the top

left of the data grid).

•	 Column menu: This menu appears when you right-click a column

title.

•	 Cell menu: This menu appears when you right-click a data cell.

While I have referred copiously to the context menus when explaining how to

transform data, it is probably easier to take a quick look at them now so that you can see

the various options. Figure 7-2 gives you a quick overview of these three context menus.

Figure 7-1.  Viewing a full record

Chapter 7 Data Transformation

190

Because the options that are available in the context menus are explained throughout

this, the previous, and the following chapters, I will not explain them all in detail here.

Note T he cell context menu will reflect the data type of the cell in the filter
option. So a numeric cell will have the option “Number filters.”

�Using the First Row as Headers
Power Query is very good at guessing if it needs to take the first record of a source dataset

and have it function as the column headers. This is fundamental for two reasons:

•	 You avoid leaving the columns named Column1, Column2, and so on.

Leaving them named generically like this would make it needlessly

difficult for a user (or even yourself) to understand the data.

Figure 7-2.  The Power Query Editor context menus

Chapter 7 Data Transformation

191

•	 You avoid having a text element (which should be the column title)

in a column of figures, which can cause problems later on. This

is because a whole column needs to have the same data type for

another data type to be applied. Having a header text in the first row

prevents this for numeric and date/time data types, for instance. This

could be because the header is a text, whereas the remainder of the

column contains numbers or dates.

Yet there could be—albeit rare—occasions when Power Query guesses incorrectly

and assumes that the first record in a dataset is data when it is really the header

information. So instead of headers, you have a set of generic column titles such as

Column1, Column2, and so forth. Fortunately, correcting this and using the first row as

headers is a simple task:

	 1.	 Click Use First Row as Headers in the Transform ribbon of the

Power Query window.

After a few seconds, the first record disappears and the column titles become the

elements that were in the first record. The Applied Steps list on the right now contains

a Promoted Headers element, indicating which process has taken place. This step is

highlighted.

Note P ower Query is often able to apply this step automatically when the source
is a database. It can often correctly guess when the source is a file. However, it
cannot always guess accurately, so sometimes you have to intervene. You can
see if Power Query has had to guess that the first row contained headers if it has
added a Promoted Headers step to the Applied Steps list.

In the rare event that Power Query gets this operation wrong and presumes that

a first row is column titles when it is not, you can reset the titles to be the first row by

clicking the tiny triangle to the right of the Use First Row as Headers button. This displays

a short menu where you can click the Use Headers as First Row option. The Applied

Steps list on the right now contains a Demoted Headers element and the column titles

are Column1, Column2, and so forth. You can subsequently rename the columns as you

see fit.

Chapter 7 Data Transformation

192

�Changing Data Type
A truly fundamental aspect of data modification is ensuring that the data is of the

appropriate type; that is, if you have a column of numbers that are to be calculated at

some point, then the column should be a numeric column. If it contains dates, then it

should be set to one of the date or time data types. I realize that this can seem arduous

and even superfluous; however, if you want to be sure that your data can be sliced and

diced correctly further down the line, then setting the right data types at the outset is vital.

An added bonus is that if you validate the data types early on in the process of loading

data, you can see from the start if the data has any potential issues—dates that cannot be

read as dates, for instance. This allows you to decide what to do with poor or unreliable

data early in your work with a dataset.

The good news here is that for many data sources, Power Query applies an

appropriate data type. Specifically, if you have loaded data from a database, then Power

Query will recognize the source data type for each column and apply a suitable Power

Query data type as the database has supplied the necessary information for Power Query

to apply the correct data type. Unfortunately, things can get a little more painful with file

sources, specifically CSV, text, and (occasionally) Excel files, as well as some XML files.

In the case of these file types, Power Query often tries to guess the data type, but there

are times when it does not succeed. If it has made a stab at deducing data types, then

you see a Changed Type step in the Applied Steps list. Consequently, if you are obtaining

your data from these sources, then you could well be obliged to apply data types to many

of the columns manually.

Note I n some cases, numbers are not meant to be interpreted as numerical data.
For instance, a French postal code is five numbers, but it will never be calculated in
any way. So it is good practice to let Power Query know this by changing the data
type to text in cases when a numeric data type is inappropriate.

Do the following to change the data type for a column or a group of columns:

	 1.	 Load the C:\DataMashupWithExcelSamples\Chapter07Example1.

xlsx sample file.

	 2.	 Display the Queries & Connections pane by clicking Queries

& Connections in the Data ribbon (unless this pane is already

visible).

Chapter 7 Data Transformation

193

	 3.	 Double-click the BaseData query in the Queries & Connections

pane to switch to the Query Editor.

	 4.	 Click inside the column whose data type you wish to change. If

you want to modify several columns, then Ctrl-click the requisite

column titles. In this example, you could select the CostPrice and

TotalDiscount columns.

	 5.	 Click the Data Type button in the Transform ribbon. A popup

menu of potential data types will appear.

	 6.	 Select an appropriate data type. If you have selected the CostPrice

and TotalDiscount columns, then Whole Number is the type to

choose.

After a few seconds, the data type will be applied. Changed Type will appear in the

Applied Steps list. The data types that you can apply are outlined in Table 7-1.

Table 7-1.  Data Types in Power Query

Data Type Description

Decimal Number Converts the data to a decimal number

Fixed Decimal

Number

Converts the data to a decimal number with a fixed number of decimals

Whole Number Converts the data to a whole (integer) number

Date/Time Converts to a date and time data type

Date Converts to a date data type

Time Converts to a time data type

Duration Sets the data as being a duration. These are used for date and time

calculations

Text Sets to a text data type

True/False Sets the data type to Boolean (True or False)

Binary Defines the data as binary, and consequently, it is not directly visible

Chapter 7 Data Transformation

194

Note T he Data Type button is also available in the Home ribbon. Equally, you can
right-click a column header and select Change Type to select a different data type.

Inevitably, there will be times when you try to apply a data type that simply cannot

be used with a certain column of data. Converting a text column (such as Make in this

sample data table) into dates will simply not work. If you do this, then Power Query will

replace the column contents with Error. This is not definitive or dangerous, and all you

have to do to return the data to its previous state is to delete the Changed Type step in

the Applied Steps list using the technique described in the previous chapter.

Sometimes you could try and change a data type when the data type has already

been changed. In this case, you will get an alert like the one shown in Figure 7-3.

Figure 7-3.  The Change Column Type alert

If this occurs, you can do one of two things:

•	 Let Power Query update the existing conversion step with the data

type that you just selected.

•	 Add a new conversion step.

Your choice will depend on exactly what type of transformation you are applying to

the underlying dataset.

It can help to alter data types at the same time for a set of columns where you think

that this operation is necessary. There are a couple of good reasons for this approach:

•	 You can concentrate on getting data types right, and if you are

working methodically, you are less likely to forget to set a data type.

Chapter 7 Data Transformation

195

•	 Applying data types for many columns (even if you are doing this

in several operations, to single or multiple columns) will only add a

single step to the Applied Steps list.

Note  Don’t look for any data formatting options in Power Query; there aren’t any.
This is deliberate since this tool is designed to structure, load, and cleanse data,
but not to present it. You carry out the formatting in the Excel as you are used to
doing.

�Detecting Data Types
Applying the correct data type to dozens of columns can be more than a little time-

consuming. Fortunately, Power Query now contains an option to apply data types

automatically to a whole table. Assuming that you still are in the BaseData query in the

file C:\DataMashupWithExcelSamples\Chapter07Example1.xlsx:

	 1.	 In the Transform ribbon, click the Detect Data Type button.

	 2.	 Changed Type will appear in the Applied Steps list. Most of the

columns will have the correct data type applied.

This technique does not always give perfect results, and there will be times when

you want to override the choice of data type that Power Query has applied. Yet it is

nonetheless a welcome addition to the data preparation toolset that can save you

considerable time when preparing a dataset.

�Data Type Indicators
It would be singularly unproductive to have to guess which column was set to which data

type. So Power Query comes to your aid by indicating, visually, the corresponding data

type for each column. If you look closely to the left of each individual column header,

you will see a tiny icon. Each icon specifies the column’s data type. The meaning of each

icon is given in Table 7-2.

Chapter 7 Data Transformation

196

�Switching Data Types
Another quick way to alter the data type for a column is to click the data type icon to the

left of the column title and select the required data type from the context menu that you

can see in Figure 7-4.

Table 7-2.  Data Type Icons in Power Query Editor

Data Type Icon Description

Any data type from among the possible data types

Whole Number

Decimal Number

Fixed Decimal Number

Percentage

Text

True/False

Date/Time

Date

Time

Date/Time/Timezone

Duration

Binary

Chapter 7 Data Transformation

197

�Data Type Using Locale
When you are converting data types, you can also choose to use the current locale to

specify date, time, and number formats. This means that users opening Power Query

from Excel in another country will see date, time, and number formats adapted to the

local formatting conventions. To do this:

	 1.	 Open the Query Editor (from inside the source file

C:\DataMashupWithExcelSamples\Chapter07Example1.pbix).

	 2.	 Click the data type icon to the left of the column title.

	 3.	 Select Using Locale from the popup menu. The Change Type with

Locale dialog will appear.

	 4.	 Choose the new data type to apply from the list of available data

types.

	 5.	 Select the required locale from the list of worldwide locales. The

dialog will look like Figure 7-5.

Figure 7-4.  The data type context menu

Chapter 7 Data Transformation

198

	 6.	 Click OK.

The data type will be converted to the selected locale. The Applied Steps list will

contain a step entitled Changed Type with Locale.

�Replacing Values
Some data that you load will need certain values to be replaced by others in a kind of

global search-and-replace operation—just as you would in a Microsoft Word document.

For instance, perhaps you need to standardize spellings where a make of car (to use the

current sample dataset as an example) has been entered incorrectly. To carry out this

particular data cleansing operation (and presuming that you have already opened the

Query Editor in the file Chapter07Sample1.xlsx), do the following:

	 1.	 Click the title of the column that contains the data that you want

to replace. The column will become selected. In this example, I

used the Model column.

	 2.	 In the Home ribbon, click the Replace Values button. The Replace

Values dialog will appear.

	 3.	 In the Value To Find box, enter the text or number that you want to

replace. I used Ghost in this example.

	 4.	 In the Replace With box, enter the text or number that you want to

replace. I used Fantôme in this example, as shown in Figure 7-6.

Figure 7-5.  The Change Type with Locale dialog

Chapter 7 Data Transformation

199

	 5.	 Click OK. The data is replaced in the entire column. Replaced

Values is added to the Applied Steps list.

I only have a few comments about this technique:

•	 The Replace Values process searches for every occurrence of the text

that you are looking for in each record of the selected columns. It

does not look for the entire contents of the cell unless you specifically

request this by checking the Match entire cell contents check box in

the Advanced options.

•	 If you click a cell containing the contents that you want to replace

(rather than the column title, as we just did), before starting the

process, Power Query automatically places the cell contents in the

Replace Values dialog as the value to find.

•	 You can only replace text in columns that contain text elements. This

does not work with columns that are set as a numeric or date data

type. Indeed, you will see a yellow alert triangle in the Replace Values

dialog if you enter values that do not match the data type of the

selected column(s).

•	 If you really have to replace parts of a date or figures in a numeric

column with other dates or numbers, then you can

•	 Convert the column to a text data type

Figure 7-6.  The Replace Values dialog

Chapter 7 Data Transformation

200

•	 Carry out the replace operation

•	 Convert the column back to the original data type

The Replace Values dialog also has a few advanced options that you can apply. You

can see these if you expand the “Advanced options” item by clicking the triangle to its

left. These options are shown in Figure 7-7 and explained in Table 7-3.

Figure 7-7.  Advanced replace options

Table 7-3.  Advanced Replace Options

Option Description

Match entire cell contents Only replaces the search value if it makes up the entire

contents of the column for a row

Replace using special characters Replaces the search value with a nonprinting character

Tab Replaces the search value with a tab character

Carriage Return Replaces the search value with a carriage return character

Line Feed Replaces the search value with a line feed character

Carriage Return and Line Feed Replaces the search value with a carriage return and line feed

Chapter 7 Data Transformation

201

Note R eplacing words that are subsets of other words is dangerous. When
replacing any data, make sure that you don’t damage elements other than the one
you intend to change.

As a final and purely spurious comment, I must add that I would never suggest

rebranding a Rolls Royce, as it would be close to automotive sacrilege.

�Transforming Column Contents
Power Query has a powerful toolbox of automated data transformations that allow you to

standardize the contents of a column in several ways. These include

•	 Setting the capitalization of text columns

•	 Rounding numeric data or applying math functions

•	 Extracting date elements such as the year, month, or day (among

others) from a date column

Power Query is very strict about applying transformations to appropriate types of

data. This is because transforms are totally dependent on the data type of the selected

column. This is yet another confirmation that applying the requisite data type is an

operation that should be carried out early in any data transformation process—and

certainly before transforming the column contents. Remember, you will only be able to

select a numeric transformation if the column is a numeric data type, and you will only

be able to select a date transformation if the column is a date data type. Equally, the text-

based transformations can only be applied to columns that are of the text data type.

�Text Transformation
Let’s look at a simple transformation operation in action. As an example, I will get Power

Query to convert the Make column into uppercase characters.

	 1.	 Still using the Query Editor opened from the file

Chapter07Example1.xlsx, click anywhere in the column whose

contents you wish to transform (Make, in this example).

Chapter 7 Data Transformation

202

	 2.	 In the Transform ribbon, click the Format button. A popup menu

will appear.

	 3.	 Select UPPERCASE, as shown in Figure 7-8.

Figure 7-8.  The Format menu

Table 7-4.  Text Transformations

Transformation Description Applied Steps Definition

Lowercase Converts all the text to lowercase Lowercased Text

Uppercase Converts all the text to uppercase Uppercased Text

Capitalize Each Word Converts the first letter of each word to a capital Capitalized Each Word

Trim Removes all spaces before and after the text Trimmed Text

Clean Removes any nonprintable characters Cleaned Text

Add Prefix Adds text at the start of the column contents Added Prefix

Add Suffix Adds text at the end of the column contents Added Suffix

The contents of the entire column will be converted to uppercase. Uppercased Text

will be added to the Applied Steps list.

As you can see from the menu for the Format button, you have seven possible options

when formatting (or transforming) text. These options are explained in Table 7-4.

Chapter 7 Data Transformation

203

Note I realize that Power Query calls text transformations formatting.
Nonetheless, these options are part of the overall data transformation options.

�Adding a Prefix or a Suffix
You can also add a prefix or a suffix to all the data in a column. This is as easy as the

following:

	 1.	 Click inside the column where you want to add a prefix.

	 2.	 In the Transform ribbon, select Format ➤ Add Prefix. The Prefix

dialog will be displayed, as you can see in Figure 7-9.

Figure 7-9.  Adding a prefix to a text

	 3.	 Enter the prefix to add in the Value field.

	 4.	 Click OK.

The prefix that you designated will be placed at the start of every record in the

dataset for the selected field.

Note I f you add a prefix or a suffix to a numeric or date/time column, then the
column data type will automatically be converted to text.

Chapter 7 Data Transformation

204

�Removing Leading and Trailing Spaces
There will inevitably be occasions when you inherit data that has extra spaces before,

after, or before and after the data itself. This can be insidious, as it can cause

•	 Data duplication, because a value with a trailing space is not

considered identical to the same text without the spaces that follow

•	 Sort issues, because a leading space causes an element to appear at

the top of a sorted list

•	 Grouping errors, because elements with spaces are not part of the

same group as elements without spaces

Fortunately, Power Query has a ruthlessly efficient solution to this problem. So,

assuming that you are in the Query Editor for the Excel file Chapter07Sample1.xlsx:

	 1.	 Click anywhere in the column whose contents you wish to

transform (Make, in this case).

	 2.	 In the Transform ribbon, click the Format button. A popup menu

will appear.

	 3.	 Select Trim from the menu.

All superfluous leading and trailing spaces will be removed from the data in the

column. This can help when sorting, grouping, and deduplicating records.

�Removing Nonprinting Characters
Some source data can contain somewhat insidious elements called nonprinting

characters. These can, even if they are nearly always invisible to humans, cause

problems in certain circumstances.

If you suspect that your source data contains nonprinting characters, you can

remove them simply like this:

	 1.	 Click inside the column (or select the columns) that you know to

contain (or that you suspect contain) nonprinting characters.

	 2.	 Click Format➤ Clean.

Power Query will add Cleaned Text to the list of Applied Steps.

Chapter 7 Data Transformation

205

�Number Transformations
Just as you can transform the contents of text-based columns, you can also apply

transformations to numeric values. As an example, suppose that you want to round up

all the figures in a column to the nearest whole number in the Query Editor.

	 1.	 Open the Query Editor for the Excel file Chapter07Sample1.xlsx

(unless already open, of course).

	 2.	 Click anywhere in the column whose contents you wish to

transform (TotalDiscount, in this case).

	 3.	 In the Transform ribbon, click the Rounding button. A popup

menu will appear, showing all the available options. You can see

this in Figure 7-10.

Figure 7-10.  Rounding options

	 4.	 Select Round Up.

The values in the entire column will be rounded up to the nearest whole number.

Rounded Up will be added to the Applied Steps list.

The other possible numeric transformations that are available are described in

Table 7-5. Because these numeric transformations use several buttons, or sequences of

menu options, in the Transform ribbon, I have indicated which button to use to get the

desired result.

Chapter 7 Data Transformation

206

Table 7-5.  Number Transformations

Transformation Description Applied Steps
Definition

Rounding ➤ Round Up Rounds each number to the specified number of

decimal places

Rounded Up

Rounding ➤ Round

Down

Rounds each number down Rounded Down

Round… Rounds each number to the number of decimals

that you specify. If you specify a negative number,

you round to a given decimal

Rounded Off

Scientific ➤ Absolute

Value

Makes the number absolute (positive) Absolute Value

Scientific ➤ Power ➤

Square

Returns the square of the number in each cell Calculated Square

Scientific ➤ Power ➤

Cube

Returns the cube of the number in each cell Calculated Cube

Value

Scientific ➤ Power ➤

Power

Raises each number to the power that you specify Calculated Power

Scientific ➤ Square

Root

Returns the square root of the number in each cell Calculated Square

Root

Scientific ➤ Exponent Returns the exponent of the number in each cell Calculated

Exponent

Scientific ➤ Logarithm

➤ Base 10

Returns the base 10 logarithm of the number in

each cell

Calculated Base

10 Logarithm

Scientific ➤ Logarithm

➤ Natural

Returns the natural logarithm of the number in

each cell

Calculated Natural

Logarithm

Scientific ➤ Factorial Gives the factorial of numbers in the column Calculated

Factorial

Trigonometry ➤ Sine Gives the sine of the numbers in the column Calculated Sine

(continued)

Chapter 7 Data Transformation

207

Note P ower Query will not even let you try to apply numeric transformation to
texts or dates. The relevant buttons remain grayed out if you click inside a column
of letters or dates.

�Calculating Numbers

Power Query can also apply simple arithmetic to the figures in a column. Suppose, for

instance, that you want to multiply all the sale prices by 110% as part of your forecasts.

This is how you can do just that in the Query Editor for the Excel file Chapter07Sample1.

xlsx:

	 1.	 Click inside any column of numbers. In this example, I used the

column SalePrice.

	 2.	 Click the Standard button in the Transform ribbon. The menu will

appear as you can see in Figure 7-11.

Table 7-5.  (continued)

Transformation Description Applied Steps
Definition

Trigonometry ➤ Cosine Gives the cosine of the numbers in the column Calculated Cosine

Trigonometry ➤

Tangent

Gives the tangent of the numbers in the column Calculated Tangent

Trigonometry ➤

ArcSine

Gives the arcsine of the numbers in the column Calculated ArcSine

Trigonometry ➤

ArcCosine

Gives the arccosine of the numbers in the column Calculated

ArcCosine

Trigonometry ➤

ArcTangent

Gives the arctangent of the numbers in the column Calculated

ArcTangent

Chapter 7 Data Transformation

208

	 3.	 Click Multiply. The Multiply dialog will appear.

	 4.	 Enter 1.1 in the Value box. The dialog will look like the one shown

in Figure 7-12.

Figure 7-11.  Applying a calculation to a column

Figure 7-12.  Applying a calculation to a column

	 5.	 Click OK.

All the numbers in the selected column will be multiplied by 1.1. In other words, they

are now 110% of the original value. Table 7-6 describes the possible math operations that

you can carry out in Power Query.

Chapter 7 Data Transformation

209

Note  You can also carry out many types of calculations in Excel and avoid
carrying out calculations in the Query Editor. Indeed, many Excel purists seem
to prefer that anything resembling a calculation should take place inside the
spreadsheet rather than at the Query stage. I will let you decide which approach
you prefer.

Finally, it is important to remember that you are altering the data when you carry out

this kind of operation. In the real world, you might be safer duplicating a column before

profoundly altering the data it contains. This allows you to keep the initial data available,

albeit at the cost of increasing both the load time and the size of the resulting Excel file.

Table 7-6.  Applying Basic Calculations

Transformation Description Applied Steps
Definition

Add Adds a selected value to the numbers in a column Added to Column

Multiply Multiplies the numbers in a column by a selected value Multiplied Column

Subtract Subtracts a selected value from the numbers in a

column

Subtracted from

Column

Divide Divides the numbers in a column by a selected value Divided Column

Integer-Divide Divides the numbers in a column by a selected value

and removes any remainder

Integer-Divided Column

Modulo Divides the numbers in a column by a selected value

and leaves only the remainder

Calculated Modulo

Percentage Applies the selected percentage to the column Calculated Percentage

Percent Of Expresses the value in the column as a percent of the

value that you enter

Calculated Percent Of

Chapter 7 Data Transformation

210

�Date Transformations

Transforming dates follows similar principles to transforming text and numbers. As an

example, here is how to isolate the month from a date in the Query Editor for the Excel

file Chapter07Sample1.xlsx:

	 1.	 Click inside the InvoiceDate column.

	 2.	 In the Transform ribbon, click the Date button. The menu will

appear.

	 3.	 Click Year. The submenu will appear.

	 4.	 Select Year. The year part of the date will replace all the dates in

the InvoiceDate column.

The other date transformations that are possible are given in Table 7-7.

Table 7-7.  Date Transformations

Transformation Description Applied Steps
Definition

Age Calculates the date and time difference (in days and

hours) between the original date and the current local

time

Calculated Age

Date Only Converts the data to a date without the time element Calculated Date

Year ➤ Year Extracts the year from the date Calculated Year

Year ➤ Start of Year Returns the first day of the year for the date Calculated Start of

Year

Year ➤ End of Year Returns the last day of the year for the date Calculated End of

Year

Month ➤ Month Extracts the number of the month from the date Calculated Month

Month ➤ Start of

Month

Returns the first day of the month for the date Calculated Start of

Month

Month ➤ End of

Month

Returns the last day of the month for the date Calculated End of

Month

(continued)

Chapter 7 Data Transformation

211

Table 7-7.  (continued)

Transformation Description Applied Steps
Definition

Month ➤ Days in

Month

Returns the number of days in the month for the date Calculated Days in

Month

Month ➤ Name of

Month

Returns the name of the month for the date Calculated Name of

Month

Day ➤ Day Extracts the day from the date Calculated Day

Day ➤ Day of Week Returns the weekday as a number (Monday is 1,

Tuesday is 2, etc.)

Calculated Day of

Week

Day ➤ Day of Year Calculates the number of days since the start of the

year for the date

Calculated Day of

Year

Day ➤ Start of Day Transforms the value to the start of the day for a date

and time

Calculated Start of

Day

Day ➤ End of Day Transforms the value to the end of the day for a date

and time

Calculated End of

Day

Day ➤ Name of Day Returns the weekday as a day of week Calculated Name

of Day

Quarter ➤ Quarter Returns the calendar quarter of the year for the date Calculated Quarter

Quarter ➤ Start of

Quarter

Returns the first date of the calendar quarter of the year

for the date

Calculated Start of

Quarter

Quarter ➤ End of

Quarter

Returns the last date of the calendar quarter of the year

for the date

Calculated End of

Quarter

Week ➤ Week of

Year

Calculates the number of weeks since the start of the

year for the date

Calculated Week

of Year

Week ➤ Week of

Month

Calculates the number of weeks since the start of the

month for the date

Calculated Week of

Month

Week ➤ Start of

Week

Returns the date for the first day of the week (Monday)

for the date

Calculated Start of

Week

Week ➤ End of

Week

Returns the date for the last day of the week (Sunday) for

the date

Calculated End of

Week

Chapter 7 Data Transformation

212

�Time Transformations

You can also transform date/time or time values into their component parts using

Power Query. This is extremely similar to how you apply date transformations, but in the

interest of completeness, the following explains how to do this once the Query Editor is

open for the Excel file Chapter07Sample1.xlsx:

	 1.	 Click inside the InvoiceDate column.

	 2.	 In the Transform ribbon, click the Time button. The menu will appear.

	 3.	 Click Hour. The hour part of the time will replace all the values in

the InvoiceDate column.

Note T ime transformations can only be applied to columns of the date/time or
time data types.

The range of time transformations is given in Table 7-8.

Table 7-8.  Time Transformations

Transformation Description Applied Steps
Definition

Time Only Isolates the time part of a date and time Extracted Time

Local Time Converts the date/time to local time from date/time and

timezone values

Extracted Local Time

Parse Extracts the date and/or date/time elements from a text Parsed DateTime

Hour ➤ Hour Isolates the hour from a date/time or date value Extracted Hour

Hour ➤ Start

of Hour

Returns the start of the hour from a date/time or time

value

Calculated Start of

Hour

Hour ➤ End

of Hour

Returns the end of the hour from a date/time or time

value

Calculated End of Hour

Minute Isolates the minute from a date/time or time value Extracted Minute

Second Isolates the second from a date/time or time value Extracted Second

Earliest Returns the earliest time from a date/time or time value Calculated Earliest

Latest Returns the latest time from a date/time or time value Calculated Latest

Chapter 7 Data Transformation

213

Note I n the real world, you could well want to leave a source column intact and
apply number or date transformations to a copy of the column. To do this, simply
apply the same transformation technique, only use the buttons in the Add Column
ribbon instead of those in the Transform ribbon.

�Duration

If you have values in a column that can be interpreted as a duration (in days, hours,

minutes, and seconds), then Power Query can extract the component parts of the

duration as a data transformation. For this to work, however, the column must be

set to the duration data type. This means that the contents of the column have to be

interpreted as a duration by Power Query. Any values that are incompatible with this

data type will be set to error values.

So, you are probably asking, what exactly does a duration look like? A duration is

expressed as

•	 Days

•	 Hours

•	 Minutes

•	 Seconds

More specifically, a duration must be expressed in the form days.

hours:minutes:seconds. So, for instance, a duration could be 11.23:5:45. This represents

11 days, 23 hours, 5 minutes, and 45 seconds.

There are a few caveats when dealing with durations:

•	 The figure for days is followed by a period—the other separators are

colons.

•	 You cannot have the duration in hours greater than 23.

•	 You cannot have the duration in minutes or seconds greater than 60.

Chapter 7 Data Transformation

214

If you have duration data in a column in Power Query, you can extract its component

parts like this:

	 1.	 Open a new, blank Excel file.

	 2.	 Click Data ➤ Get Data ➤ From File ➤ From Workbook and select

the file C:\DataMashupWithExcelSamples\Durations.xlsx.

	 3.	 Click the worksheet Sheet1 and then click Transform Data

to open the Query Editor. You will note that Power Query

automatically adds a step that changes the data type of the

DurationOnForecourt column to duration as it recognizes the data

format.

	 4.	 Click inside the column DurationOnForecourt.

	 5.	 In the Transform ribbon, click the Duration button. The menu will

appear.

	 6.	 Click Hours. The hour part of the time will replace all the values in

the InvoiceDate column.

The range of duration transformations is given in Table 7-9.

Table 7-9.  Duration Transformations

Transformation Description Applied Steps
Definition

Days Isolates the day element from a duration value Extracted Days

Hours Isolates the hour element from a duration value Extracted Hours

Minutes Isolates the minutes element from a duration value Extracted Minutes

Seconds Isolates the seconds element from a duration value Extracted

Seconds

Total Days Displays the duration value as the number of days and a

fraction representing hours, minutes, and seconds

Calculated Total

Days

Total Hours Displays the duration value as the number of hours and a

fraction representing minutes and seconds

Calculated Total

Hours

(continued)

Chapter 7 Data Transformation

215

Note I f you multiply or divide a duration, Power Query displays a dialog so that
you can enter the value to multiply or divide the duration by.

�Filling Down Empty Cells
Imagine a data source where the data has come into Power Query from a matrix-style

structure. The result is that some columns only contain a single example of an element and

then a series of empty cells until the next element in the list. If this is difficult to imagine,

then take a look at the sample file CarMakeAndModelMatrix.xlsx shown in Figure 7-13.

Table 7-9.  (continued)

Transformation Description Applied Steps
Definition

Total Minutes Displays the duration value as the number of minutes and a

fraction representing seconds

Calculated Total

Minutes

Total Seconds Displays the duration value as the number of seconds and a

fraction representing milliseconds

Calculated Total

Seconds

Multiply Multiplies the duration (and all its component parts) by a

value that you enter

Multiplied Column

Divide Divides the duration (and all its component parts) by a value

that you enter

Divided Column

Statistics ➤ Sum Returns the total for all the duration elements in the column Calculated Sum

Statistics ➤

Minimum

Returns the minimum value of all the duration elements in

the column

Calculated

Minimum

Statistics ➤

Maximum

Returns the maximum value of all the duration elements in

the column

Calculated

Maximum

Statistics ➤

Median

Returns the median value for all the duration elements in the

column

Calculated

Median

Statistics ➤

Average

Returns the average for all the duration elements in the

column

Calculated

Average

Chapter 7 Data Transformation

216

All these blank cells are a problem since you need a full data table without any blank

cells in the dataset to analyze data in both Excel worksheets and the data model. Or

rather, the blank cells would be an issue if Power Query did not have a really cool way of

overcoming this particular difficulty. Do the following to solve this problem:

	 1.	 Open a new Excel file.

	 2.	 In the Data ribbon, click Get Data ➤ From File ➤ From Workbook.

	 3.	 In the Get Data dialog, select Excel. Then click Connect

and navigate to C:\DataMashupWithExcelSamples\

CarMakeAndModelMatrix.xlsx.

	 4.	 Click Import, select Sheet1, and click Transform Data. This will

open the Power Query Editor.

	 5.	 Select the column that contains the empty cells.

	 6.	 In the Transform ribbon, click Fill. The menu will appear.

Figure 7-13.  A matrix data table in Excel

Chapter 7 Data Transformation

217

	 7.	 Select Down. The blank cells will be replaced by the value in

the first non-empty cell above. Filled Down will be added to the

Applied Steps list.

The table will now look like Figure 7-14.

Note T his technique is built to handle a fairly specific problem and only really
works if the imported data is grouped by the column containing the missing
elements.

Figure 7-14.  A data table with empty cells replaced by the correct data

Chapter 7 Data Transformation

218

Although rare, you can also use this technique to fill empty cells with the value from

below. If you need to do this, just select Fill ➤ Up from the Transform ribbon. In either

case, you need to be aware that the technique is applied to the entire column.

�Extracting Part of a Column’s Contents
There could well be times when the contents of a source column contain more data than

you actually need. In cases like this, Power Query can help you by extracting only part of

a column. This technique works like this:

	 1.	 Load the C:\DataMashupWithExcelSamples\Chapter07Example1.

xlsx sample file.

	 2.	 Display the Queries & Connections pane by clicking Queries &

Connections in the Data ribbon.

	 3.	 Double-click the BaseData query to switch to the Query Editor.

	 4.	 Click inside the InvoiceNumber column. As you can see, the

invoice number is composed of multiple elements, each separated

by a hyphen.

	 5.	 In the Transform ribbon, click Extract ➤ Text Before Delimiter.

The Text Before Delimiter dialog will be displayed.

	 6.	 Enter a hyphen (or a minus sign) in the Delimiter field. The dialog

will look like Figure 7-15.

Figure 7-15.  The Text Before Delimiter dialog

Chapter 7 Data Transformation

219

	 7.	 Click OK. The contents of the field will be replaced by the

characters before the hyphen. A step named Extracted Text Before

Delimiter will be added to the Applied Steps list.

The Extract function allows you to choose from a variety of ways in which you can

extract a subset of data from a column. The currently available options are explained in

Table 7-10.

Table 7-10.  Extract Transformations

Transformation Description Applied Steps
Definition

Length Displays the length in characters of the contents of the

field

Extracted Length

First Characters Displays a specified number of characters from the

left of the field

Extracted First

Characters

Last Characters Displays a specified number of characters from the

right of the field

Extracted Last

Characters

Range Displays a specified number of characters between

a specified start and end position (in characters, from

the left of the field)

Extracted Range

Text Before

Delimiter

Displays all the text occurring before a specified

character

Extracted Text

Before Delimiter

Text After

Delimiter

Displays all the text occurring after a specified character Extracted Text After

Delimiter

Text Between

Delimiters

Displays all the text occurring between two specified

characters

Extracted Text

Between Delimiters

�Advanced Extract Options
Three of the Extract options (Text Before Delimiter, Text After Delimiter, and Text

Between Delimiters) let you apply some advanced options that allow you to push the

envelope even further when extracting data from a column. These techniques are

explained in the following two sections.

Chapter 7 Data Transformation

220

�Text Before and After Delimiter

If you are extracting data from the middle of a column and you are using a delimiter to

isolate the text you want to keep, then you have a couple of additional options available.

You can access these options from the dialog that you saw in Figure 7-15 by clicking

Advanced options. The dialog will then look like the one shown in Figure 7-16.

Figure 7-16.  The Advanced options of the Text Before and Text After Delimiter
dialogs

The two options that you now have are

•	 Scan for the delimiter: This option lets you choose between working

forward from the start of the contents of the column and working

backward from the end of the contents of the column to locate the

delimiter you are searching for.

•	 Number of delimiters to skip: Here you can specify that it is the nth

occurrence of a delimiter that interests you.

�Text Between Delimiters

The Advanced options of the Text Between Delimiters dialog essentially lets you apply

the same options that you saw previously, only for both the initial delimiter and the final

delimiter. In Figure 7-17 you can see this in the Text Between Delimiters dialog.

Chapter 7 Data Transformation

221

Note T he Extract button can be found in both the Transform and New Column
ribbons. If you carry out this operation from the Transform ribbon, then the contents
of the existing column will be replaced. If you use the button in the Add Column
ribbon, then a new column containing the extracted text will be added at the right
of any existing columns.

�Duplicating Columns
Sometimes you just need a simple copy of a column, with nothing added and nothing

taken away. This is where the Duplicate Column button comes into play.

	 1.	 Load the C:\DataMashupWithExcelSamples\Chapter07 Example1.xlsx

sample file.

	 2.	 Switch to the Data ribbon and click Queries & Connections to

display the Queries & Connections pane (unless it is already

visible).

Figure 7-17.  The Advanced options of the Text Between Delimiters dialog

Chapter 7 Data Transformation

222

	 3.	 Double-click the BaseData query to switch to the Query Editor.

	 4.	 Click inside (or on the title of) the column that you want to

duplicate. I will use the Make column in this example.

	 5.	 In the Add Column ribbon, click the Duplicate Column button.

After a few seconds, a copy of the column is created at the right of

the existing table. Duplicated Column will appear in the Applied

Steps list.

	 6.	 Scroll to the right of the table and rename the existing column; it is

currently named Make-Copy.

Note T he duplicate column is named Original Column Name-Copy. I find that
it helps to rename copies of columns sooner rather than later in a data mashup
process.

�Splitting Columns
Sometimes a source column contains data that you really need to break up into smaller

pieces across two or more columns. The following are classic cases where this happens:

•	 A column contains a list of elements, separated by a specific

character (known as a delimiter).

•	 A column contains a list of elements, but the elements can be divided

at specific places in the column.

•	 A column contains a concatenated text that needs to be split into its

composite elements (a bank account number or a Social Security

number is an example of this).

The following short sections explain how to handle such eventualities.

Chapter 7 Data Transformation

223

�Splitting Column by a Delimiter
Here is another requirement that you may encounter occasionally. The data that has

been imported has a column that needs to be further split into multiple columns, and

you want this to happen automatically. Imagine a text file where columns are separated

by semicolons, and these subdivisions each contain a column that holds a comma-

separated list of elements. Once you have imported the file, you then need to further

separate the contents of this column that uses a different delimiter.

Here is what you can do to split the data from one column over several columns:

	 1.	 Open a new Excel file.

	 2.	 In the Data ribbon, click Get Data ➤ From File ➤ From Workbook.

	 3.	 Select the C:\DataMashupWithExcelSamples\DataToParse.xlsx

sample file in the Query Editor.

	 4.	 Click the ClientList workbook.

	 5.	 Click Transform Data to open the Query Editor.

	 6.	 In the Transform ribbon, click Use First Row as Headers.

	 7.	 Click inside the ClientList column. You can see that this column

contains several data elements, each separated by a semicolon.

	 8.	 In the Transform ribbon, click Split Column ➤ By Delimiter. The

Split Column by Delimiter dialog appears.

	 9.	 Select Semicolon from the list of available options in the “Select

or enter delimiter” popup (although the Query Editor could well

have detected this already).

	 10.	 Click “Each occurrence of the delimiter” as the location to split

the text column. The dialog should look like Figure 7-18.

Chapter 7 Data Transformation

224

	 11.	 Click OK. Split Column by Delimiter will appear in the Applied

Steps list.

The initial column is replaced and all the new columns are named ClientList.1,

ClientList.2, and so forth. As many additional columns as there are delimiters are

created; each is named (Column.n) and is sequentially numbered. The result of this

operation looks like Figure 7-19.

Figure 7-19.  The results of splitting a column

Figure 7-18.  Splitting a column using a delimiter

Chapter 7 Data Transformation

225

This particular process has several options, and their consequences can be fairly

far-reaching as far as the data is concerned. Table 7-11 contains a description of the

available options.

�Advanced Options for Delimiter Split
There are a small number of advanced options that are available when splitting text by

delimiters. These are displayed when you click the Advanced options element in the

Split Column by Delimiter dialog and are explained in Table 7-12.

Table 7-11.  Delimiter Split Options

Option Description

Colon Uses the colon (:) as the delimiter

Comma Uses the comma (,) as the delimiter

Equals Sign Uses the equals sign (=) as the delimiter

Semi-Colon Uses the semicolon (;) as the delimiter

Space Uses the space () as the delimiter

Tab Uses the tab character as the delimiter

Custom Lets you enter a custom delimiter

At the Left-Most

Delimiter

Splits the column once only at the first occurrence of the delimiter

At the Right-Most

Delimiter

Splits the column once only at the last occurrence of the delimiter

At Each Occurrence of

the Delimiter

Splits the column into as many columns as there are delimiters

Split into Columns This leaves the number of rows as it is in the dataset and creates new

columns for each new element resulting from the split operation

Split into Rows Creates a new row for each new element resulting from the split operation

and duplicates the existing record as many times as there are split

elements

Chapter 7 Data Transformation

226

�Splitting Columns by Number of Characters
Another variant on this theme is when text in each column is a fixed number of

characters and needs to be broken down into constituent parts at specific intervals.

Suppose, for instance, that you have a field where each group of (a certain number of)

characters has a specific meaning, and you want to break it into multiple columns.

Alternatively, suppose you want to extract the leftmost or rightmost n characters and

leave the rest. A bank account or Social Security number is an example of this. This

is where splitting a column by the number of characters can come in useful. As the

principle is very similar to the process that we just saw, I will not repeat the whole thing

again. All you have to do is choose the “By number of characters” menu option at step 8

in the previous exercise. Options for this type of operation are given in Table 7-13.

Table 7-12.  Delimiter Split Options

Advanced options ➤

Number of Columns

to Split Into

Allows you to set a maximum number of columns into which the data is

split in chunks of the given number of characters. Any extra columns are

placed in the rightmost column

Advanced options ➤

Quote Character

Separators inside a text that is contained in double quotes are not used to

split the text into columns. Setting this option to “none” will split elements

inside quotes

Split using special

characters

Enables the Insert Special Character button. You can then click this button

and select the special character to split data on. The choice is between

Tab, Carriage Return, Line-Feed, Carriage Return and Line-Feed, and Non-

breaking Space

Chapter 7 Data Transformation

227

There are a couple of things to note when splitting columns:

•	 When splitting by a delimiter, Power Query makes a good attempt at

guessing the maximum number of columns into which the source

column must be split. If it gets this wrong (and you can see what its

guesstimate is if you expand the Advanced options box), you can

override the number here.

•	 If you select a Custom Delimiter, Power Query displays a new box in

the dialog where you can enter a specific delimiter.

•	 Not every record has to have the same number of delimiters. Power

Query simply leaves the rightmost column(s) blank if there are fewer

split elements for a row.

Table 7-13.  Options When Splitting a Column by Number of Characters

Option Description

Number of Characters Lets you define the number of characters of data before splitting the

column

Once, As Far Left As

Possible

Splits the column once only at the given number of characters in from

the left (if the length of the data in the row allows this)

Once, As Far Right As

Possible

Splits the column once only at the given number of characters in from

the right (if the length of the data in the row allows this)

Repeatedly Splits the column as many times as necessary to cut it into segments

every defined number of characters

Advanced options ➤

Number of Columns to

Split Into

Allows you to set a maximum number of columns into which the data is

split in chunks of the given number of characters. Any extra columns are

placed in the rightmost column

Split into Columns This leaves the number of rows as it is in the dataset and crates new

columns for each new element resulting from the split operation

Split into Rows Creates a new row for each new element resulting from the split

operation and duplicates the existing record as many times as there are

split elements

Chapter 7 Data Transformation

228

Note  You can only split columns if they are text data. The Split Column button
remains grayed out if your intention is to try to split a date or numeric column. You
can, however, convert the data type from a date, datetime, or numeric data type to
a text data type before splitting a column.

�Merging Columns
You may be feeling a certain sense of déjà vu when you read the title of this section. After

all, we saw how to merge columns (i.e., how to fuse the data from several columns into a

single, wider column) in a previous chapter, did we not?

Yes, we did indeed. However, this is not the only time in this chapter that you will

see something that you have tried previously. This is because Power Query repeats

several of the options that are in the Transform ribbon in the Add Column ribbon. While

these functions all work in much the same way, there is one essential difference. If you

select an option from the Transform ribbon, then the column(s) that you selected is

modified. If you select a similar option from the Add Column ribbon, then the original

column(s) will not be altered, but a new column is added containing the results of the

data transformation.

Merging columns is a case in point. Now, as I went into detail as to how to execute

this kind of data transformation in the previous chapter, I will not describe it all over again

here. Suffice it to say, if you Ctrl-click the headings of two or more columns and then click

Merge Columns in the Add Column ribbon, you will still see the data from the selected

columns concatenated into a single column. However, this time the original columns

remain in the dataset. The new column is named Merged, exactly as was the case for the

first of the columns that you selected when merging columns using the Transform ribbon.

The following are other functions that can either overwrite the data in existing

columns or display the result as a new column:

•	 Format: Trims or changes the capitalization of text

•	 Extract: Takes part of a column and creates another column from this

data

•	 Parse: Adds a column containing the source column data as JSON or

XML strings

Chapter 7 Data Transformation

229

•	 Statistics: Creates a new column of aggregated numeric values

•	 Standard: Creates a new column of calculated numeric values

•	 Scientific: Creates a new column by applying certain kinds of math

operations to the values in a column

•	 Trigonometry: Creates a new column by applying certain kinds of

trigonometric operations to the values in a column

•	 Rounding: Creates a new column by rounding the values in a column

•	 Information: Creates a new column indicating arithmetical

information about the values in a column

•	 Date: Creates a new column by extracting date elements from the

values in a date column

•	 Time: Creates a new column by extracting time elements from the

values in a time or date/time column

•	 Duration: Creates a new column by calculating the duration between

two dates or date/times.

When transforming data, the art is to decide whether you want or need to keep the

original column before applying one of these functions. Yet, once again, it is not really

fundamental if you later decide that you made an incorrect decision, as you can always

backtrack. Alternatively, you can always decide to insert new columns as a matter of

principle and delete any columns that you really do not need at a later stage in the data

transformation process.

�Creating Columns from Examples
Creating your own columns can be a little scary if you have not had much previous

experience with Excel or Power Pivot formulas, so the Power Query development team

has tried to make your life easier by adding another way to create custom columns.

Instead of referring to columns by the column name (and having to handle square

brackets and other peculiar characters), you can build a new column by using the actual

data in a row.

Chapter 7 Data Transformation

230

The following steps show an example of how to do this:

	 1.	 Load the C:\DataMashupWithExcelSamples\Chapter07Example1.

xlsx sample file.

	 2.	 Display the Queries & Connections pane if necessary by clicking

Queries & Connections in the Data ribbon.

	 3.	 Double-click the BaseData query to switch to the Query Editor.

	 4.	 In the Add Column ribbon, click Column From Examples.

A new kind of formula bar will appear above the data. It will look

like Figure 7-20. At the same time, a new, empty column will be

created at the right of the existing data.

Figure 7-21.  Displaying the data from a row when creating a column from examples

Figure 7-20.  Creating a column from examples

	 5.	 Double-click the new column on the right. A list of data from each

field will be displayed, as shown in Figure 7-21.

Chapter 7 Data Transformation

231

	 6.	 Double-click Red to select the data from the Color column.

	 7.	 Enter a space, a hyphen, and a space, then type Camargue (this is

the name of the model for this row).

	 8.	 Click OK in the formula bar at the top.

Power Query will add a new column containing the color, a separator, and the Model.

Inserted Merged Column will be added as a new step in the Applied Steps list. In fact,

what Power Query has done is to use the column contents as a proxy for the column name.

Note I n the popup menu for the Column from Examples button, you can choose
to take all existing columns as the basis for the example or only any columns that
you have previously selected.

As you can see from this short example, creating columns by example lets you use

the data from a column rather than the column name. It also removes the need for

double quotes and ampersand characters that you had to use when writing the code to

create a new column in the previous section.

Tip I f you select Column From Examples ➤ From Selection, then you will only
see data from the selected columns when you double-click inside the new column
to see samples of data as you did in step 6 of this example.

�Adding Conditional Columns
Not all additional columns are a simple extraction or concatenation of existing data.

There will be times when you will want to apply some simple conditions that define the

contents of a new column. This is where Power Query’s Conditional Column function

comes into its own.

Chapter 7 Data Transformation

232

Conditional Columns are probably best understood with the aid of a practical

example. So let’s suppose that you want to add a column that contains a comment on the

type of buyer for Brilliant British Cars’s products. Here is how you can do this:

	 1.	 Load the C:\DataMashupWithExcelSamples\Chapter07Example1.

xlsx sample file.

	 2.	 Display the Queries & Connections pane (if required) by clicking

Queries & Connections in the Data ribbon.

	 3.	 Double-click the BaseData query to switch to the Query Editor.

	 4.	 In the Add Column ribbon, click Conditional Column. The Add

Conditional Column dialog will appear.

	 5.	 Enter BuyerType in the “New column name” field.

	 6.	 Select Make as the column name.

	 7.	 Leave equals as the operator.

	 8.	 Enter Rolls Royce as the value.

	 9.	 Enter Posh as the output.

	 10.	 Click Add Clause.

	 11.	 Select Make as the column name, leave equals as the operator,

enter Bentley as the value, and add Classy as the output.

	 12.	 Enter Bling in the Else field. The dialog will look like Figure 7-22.

Chapter 7 Data Transformation

233

	 13.	 Click OK. The new column will be added containing either Posh,

Classy, or Bling, depending on the make for each record. Added

Conditional Columns will appear as the new step in the Applied

Steps list.

As you can see from the Add Conditional Column dialog, it has a range of options

that you can tweak when defining the logic for the data matching. These options are

outlined in Table 7-14.

Figure 7-22.  The Add Conditional Column dialog

Table 7-14.  Custom Column Operators

Operator Description

Equals Sets the text that must match the contents of the selected field for the output to

be applied

Does Not Equal Sets the text that must not match the contents of the selected field for the

output to be applied

Begins With Sets the text at the left of the selected field for the output to be applied

Does Not Begin

With

Sets the text that must not appear at the left of the selected field for the output

to be applied

(continued)

Chapter 7 Data Transformation

234

It is also worth noting that the comparison value, the output, and the alternative

output can be values (as was the case in this example), columns, or parameters (which

you will learn about in Chapter 9). If you want to remove a rule, simply click the ellipses

at the right of the required rule and select Delete.

Tip S hould you wish to alter the order of the rules in the Add Conditional Column
dialog, all you have to do is click the ellipses at the right of the selected rule and
select Move Up or Move Down from the popup menu.

�Index Columns
An index column is a new column that numbers every record in the table sequentially.

This numbering scheme applies to the table, because it is currently sorted and begins at

zero. There are many situations where an index column can be useful. The following are

some examples:

•	 Reapply a previous sort order.

•	 Create a unique reference for every record.

•	 Prepare a recordset for use as a dimension table in a Power Pivot

data model. In cases like this, the index column becomes what

dimensional modelers call a surrogate key.

Operator Description

Ends With Sets the text at the right of the selected field for the output to be applied

Does Not

End With

Sets the text that must not appear at the right of the selected field for the output

to be applied

Contains Sets the text that can appear anywhere in the selected field for the output to be

applied

Does Not Contain Sets the text that cannot appear anywhere in the selected field for the output to

be applied

Table 7-14.  (continued)

Chapter 7 Data Transformation

235

This list is not intended to be exhaustive in any way; you will almost certainly find

other uses as you work with Power Query. Whatever the need, here is how to add an

index column inside Power Query:

	 1.	 In the Add Column ribbon, click Index Column. The new,

sequentially numbered column is added at the right of the table,

and Added Index is added to the Applied Steps list.

	 2.	 Scroll to the right of the table and rename the index column; it is

currently named Index.

You have a fairly free hand when it comes to deciding how to begin numbering an

index column. The choices are as follows:

•	 Start at 0 and increment by a value of 1 for each row.

•	 Start at 1 and increment by a value of 1 for each row.

•	 Start at any number and increase by any number.

As you saw when adding Index columns, the default is for Power Query to begin

numbering rows at 0. However, you can choose another option by clicking the small

triangle to the right of the Add Index Column button. This displays a menu with the three

options outlined.

Selecting the third option, Custom, displays the dialog that you see in Figure 7-23.

Figure 7-23.  The Add Index Column dialog

This dialog lets you specify the start number for the first row in the dataset as well as

the increment that is added for each record.

Chapter 7 Data Transformation

236

�Conclusion
In this chapter, you learned some essential techniques that you can use to cleanse

and structure datasets. You saw how to round numbers up and down, how to deliver

conformed text presentation, and how to remove extraneous spaces and nonprinting

characters from columns of data.

You also saw how to replace values inside columns, as well as ways of applying

mathematical, statistical, and trigonometric functions to numbers. Other techniques

covered extracting date, time, and duration elements from date/time and duration

columns.

Finally, you saw a series of techniques that help you to add new columns based on

the data in existing columns. These range from simple copies of an entire column or

combining columns to extracting parts of a column’s data or even deducing different

data that is added to a new column using simple logic.

It is now time to see how you can join hitherto separate datasets into single queries

and parse complex data types to add them to a dataset. You will even learn how to

append multiple files in a single query and how to pivot and unpivot data. All of this will

be the subject of the next chapter.

Chapter 7 Data Transformation

237
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_8

CHAPTER 8

Restructuring Data
In the previous two chapters, you saw how to hone your dataset in Power Query so that

you defined only the rows and columns of data that you really need as the basis for your

analysis. Then you learned how to cleanse and complete the data that they contain. In

this chapter, you will learn how to build on these foundations to deliver data that is ready

to be molded into a structured and usable data model.

The generic term for this kind of data preparation in Power Query is restructuring

data. It covers the following:

•	 Joining queries: This involves taking two queries and linking them

so that you display the data from both sources as a single dataset.

You will learn how to extend a query with multiple columns from

a second query as well as how to aggregate the data from a second

query and add this to the initial dataset. You will also see how to

create complex joins when merging queries.

•	 Pivoting and unpivoting data: If you need to switch data in rows

to display as columns—or vice versa—then you can get the Power

Query Editor to help you do exactly this. This means that you can

guarantee that the data in all the tables that you are using conforms

to a standardized tabular structure that is essential for Power Query

to function efficiently.

•	 Transposing data: This can be required to switch columns into rows

and vice versa.

https://doi.org/10.1007/978-1-4842-6018-0_8#ESM

238

These techniques can be—and probably will be—used alongside many of the

techniques that you saw previously in Chapters 6 and 7. After all, one of the great

strengths of Power Query is that it recognizes that data transformation is a complex

business and consequently does not impose any strict way of working. Indeed, it lets you

experiment freely with a multitude of data transformation options. So remember that

you are at liberty to take any approach you want when transforming source data. The

only thing that matters is that you use it to give you the result that you want.

�The Power Query Editor View Ribbon
Until now, we have concentrated our attention on the Power Query Editor Home,

Transform, and Add Column ribbons. This is for the good and simple reason that these

ribbons are where nearly all the action takes place. There is, however, a fourth essential

Power Query Editor ribbon—the View ribbon. The buttons that it contains are shown in

Figure 8-1, and the options are explained in Table 8-1.

Figure 8-1.  The Power Query View ribbon

Chapter 8 Restructuring Data

239

Possibly the only option that is not immediately self-explanatory is the Advanced

Editor button. It displays the code for all the transformations in the query as a single

block of “M” language script. You will learn more about this in Chapter 12.

Tip P ersonally, I find that the Query Settings pane and the formula bar are
too vital to be removed from the Power Query window when transforming data.
Consequently, I tend to leave them visible. If you need the screen real estate,
however, then you can always hide them for a while.

�Merging Data
Until now, we have treated each individual query as if it existed in isolation. The reality,

of course, is that you will frequently be required to use the output of one query in

conjunction with the output of another to join data from different sources in various

ways. Assuming that the results of one query share a common field (or fields) with

Table 8-1.  Power Query View Ribbon Options

Option Description

Query Settings Displays or hides the Query Settings pane at the right of the Power Query

window. This includes the Applied Steps list

Monospaced Displays previews in a monospaced font

Show whitespace Displays whitespace and new line characters

Go to Column Allows you to select a specific column

Always allow Allows parameterization in data source and transformation dialogs.

Parameterization is the subject of Chapter 11

Advanced Editor Displays the Advanced Editor dialog containing all the code for the steps in

the query

Query Dependencies Displays the sequence of query links and dependencies

Chapter 8 Restructuring Data

240

another query, you can “join” queries into a single “flattened” data table. Power Query

calls this a merge operation, and it enables you, among other things, to

•	 Look up data elements in another “reference” table to add lookup

data. For example, you may want to add a client name where only the

client reference code or number exists in your main table.

•	 Aggregate data from a “detail” table (such as invoice lines) and

include the totals in a higher-grained table, such as a table of

invoices.

Here, again, the process is not difficult. The only fundamental factor is that the two

tables, or queries, that you are merging must have a shared field or fields that enable the

two tables to match records coherently. Let’s look at a couple of examples.

�Extending a Query with Merged Data
First, let’s try extending an existing query by adding linked data from a second query:

	 1.	 In a new, empty Excel file, use Power Query to connect to both the

worksheets in the C:\DataMashupWithExcelSamples\SalesData.

xlsx Excel file. These are Sales and Clients.

	 2.	 Do not load the data, but click the Transform data button in the

Home ribbon. This will display the two separate source datasets in

the Power Query Editor.

	 3.	 Click the query named Sales in the Queries pane of the Power

Query window.

	 4.	 Click the Merge Queries button in the Home ribbon. The Merge

dialog will appear.

	 5.	 In the upper part of the dialog—where an overview of the output

from the current query is displayed—scroll to the right and click

the ClientName column title. This column is highlighted.

	 6.	 In the popup under the upper table, select the Clients query. The

output from this query will appear in the lower part of the dialog.

Chapter 8 Restructuring Data

241

	 7.	 In the lower table, select the column title for the column—the join

column—that maps to the column that you selected in step 5. This

will also be the ClientName column. This column is then selected

in the lower table.

	 8.	 Select Inner (only matching rows) from the Join Kind popup

menu. The dialog will look like Figure 8-2.

Figure 8-2.  The Merge dialog

	 9.	 Click OK. A new column is added to the right of the existing data

table. It is named Clients—representing the merged table.

	 10.	 Scroll to the right of the existing data table. The new column that

has just been created from the merge step contains the word Table

in every cell. This column will look something like Figure 8-3.

Chapter 8 Restructuring Data

242

	 11.	 Click the Expand icon to the right of the added column name. The

popup list of all the available fields in this data table (or query, if

you prefer) is displayed, as shown in Figure 8-4.

Figure 8-4.  The fields available in a joined query

Figure 8-3.  A new, merged column

	 12.	 Ensure that the Expand radio button is selected.

	 13.	 Clear the selection of all the columns by unchecking the (Select

All Columns) check box.

Chapter 8 Restructuring Data

243

	 14.	 Select the following columns:

	 a.	 ClientSize

	 b.	 ClientSince

	 15.	 Uncheck Use original column name as prefix.

	 16.	 Click OK. The selected columns from the merged table are added

to the main table, and the link to the reference table (the new

column) is removed.

	 17.	 Rename the columns that have been added if necessary. The

result should look like that in Figure 8-5.

Figure 8-5.  Merged column output

You now have a single table of data that contains data from two linked data sources.

Reprocessing the Sales query will also reprocess the dependent clients query and result

in the latest version of the data being reloaded.

It is worth noting that it is not necessary to select from the second query any

columns that you have already selected from the first query or you will simply return

duplicate columns.

Chapter 8 Restructuring Data

244

Note  You probably noticed that the Merge dialog indicated how many matching
records there were in the two queries. This can be a useful indication that you have
selected the correct column(s) to join the two queries.

�Aggregating Data During a Merge Operation
If you are not just looking up reference data but need to aggregate data from a separate

table and then add the results to the current query, then the process is largely similar.

This second approach, however, is designed to suit another completely different

requirement. Previously, you saw the case where the current query had many records

that mapped to a single record in the lookup table. This second approach is for when

your current (or main) query has a single record where there are multiple linked records

in the second query. Consequently, you need to aggregate the data in the second table

to bring the data across into the first table. Here is a simple example, using some of the

sample data from the C:\DataMashupWithExcelSamples folder:

	 1.	 Open a new Excel worksheet.

	 2.	 In the Data menu, click Get Data ➤ From File ➤ From Workbook.

	 3.	 Find the InvoicesAndInvoiceLines.xlsx Excel source file in the

C:\DataMashupWithExcelSamples folder.

	 4.	 Click the Select multiple items check box.

	 5.	 Select the two worksheets it contains (Invoices and InvoiceLines)

in the Navigator.

	 6.	 Click Transform Data. This will create two queries and open the

Power Query Editor.

	 7.	 Click the query named Invoices in the Queries pane on the left.

	 8.	 In the Home ribbon, click the Merge Queries button. The Merge

dialog will open. You will see some of the data from the Invoices

dataset in the upper part of the dialog.

	 9.	 Click anywhere inside the InvoiceID column. This column is

selected.

Chapter 8 Restructuring Data

245

	 10.	 In the popup, select the InvoiceLines query. You will see some

of the data from the InvoiceLines dataset in the lower part of the

dialog.

	 11.	 Click anywhere inside the InvoiceID column for the lower table.

This column is selected.

	 12.	 Select Inner (only matching rows) from the Join Kind popup

menu. The dialog will look like Figure 8-6.

Figure 8-6.  The Merge dialog when aggregating data

	 13.	 Click OK. The Merge dialog will close and a new column named

InvoiceLines will be added at the right of the Invoices query.

	 14.	 Scroll to the right of the existing data table. You will see the new

column (named InvoiceLines) that contains the word Table in

every cell.

Chapter 8 Restructuring Data

246

	 15.	 Click the Expand icon to the right of the new column title (the two

arrows facing left and right). The popup list of all the available

fields in the InvoiceLines query is displayed.

	 16.	 Select the Aggregate radio button.

	 17.	 Select the Sum of SalePrice field and uncheck all the others.

	 18.	 Uncheck the “Use original column name as prefix” check box. The

dialog will look like Figure 8-7.

Figure 8-7.  The available fields from a merged dataset

	 19.	 Click OK.

Power Query will add up the total sale price for each invoice and add this as a new

column. Naturally, you can choose the type of aggregation that you wish to apply (before

clicking OK), if the sum is not what you want. To do this, place the cursor over the

column that you want to aggregate (see step 11 in the preceding exercise) and click the

popup menu at the right of the field name. Power Query will suggest a set of options. The

available aggregation options are explained in Table 8-2.

Chapter 8 Restructuring Data

247

Tip I f you loaded the data instead of editing the query in step 1, simply click the
Transform Data button in the Home ribbon to switch to the Query Editor.

The merge process that you have just seen, while not complex in itself, suddenly

opens up many new horizons. It means that you can now create multiple separate

queries that you can then use together to expand your data in ways that allow you to

prepare quite complex datasets.

Here are a couple of comments I need to make about the merge operation:

•	 Only queries that have been previously created in the Power Query

window can be used when merging datasets. So remember to

connect to all the datasets that you require before attempting a merge

operation.

•	 Refreshing a query will cause any other queries that are merged into

this query to be refreshed also. This way you will always get the most

up-to-date data from all the queries in the process.

Table 8-2.  Merge Aggregation Options

Option Description

Sum Returns the total value of the field

Average Returns the average value of the field

Median Returns the median value of the field

Minimum Returns the minimum value of the field

Maximum Returns the maximum value of the field

Count (All) Counts all records in the dataset

Count (Not Blank) Counts all records in the dataset that are not empty

Chapter 8 Restructuring Data

248

�Merge as a New Query
In the two previous sections, you extended an existing query by adding data from

another query. A final variation on the theme of merging queries is to create a

completely new query based on the result of merging two source queries. The advantage

of this approach is that it leaves the source queries intact either to reuse in yet other

queries or to revert to more easily should the new merged query not give the required

results.

	 1.	 Follow steps 1 through 3 from the section “Extending a Query with

Merged Data.”

	 2.	 In the Home ribbon, click the small triangle at the right of the

Merge Queries button. You can see the available options in the

popup menu in Figure 8-8.

Figure 8-8.  Merging tables as a new query

	 3.	 Select Merge Queries as New.

	 4.	 Continue with steps 5 through 17 from the section “Extending a

Query with Merged Data.”

This will create a new query (named Merge—but you can rename it later) and leave

the initial queries intact.

This approach can be more fluid and agile than simply extending an existing query.

You can rest assured that if you refresh the data, the new merged query will also be

refreshed as part of the process.

�Types of Join
When merging queries—either to join data or to aggregate values—you are faced with

a choice when it comes to how to link the two queries. The choice of join can have a

profound effect on the resulting dataset. Consequently, it is important to understand the

six join types that are available. These are described in Table 8-3.

Chapter 8 Restructuring Data

249

Note  When you use any of the outer joins, you are keeping records that do not
have any corresponding records in the second query. Consequently, the resulting
dataset contains empty values for some of the columns.

When you are expanding the column that is the link to a merged dataset, you have a

couple of useful options that are worth knowing about:

•	 Use original column name as prefix

•	 Search columns to expand

Table 8-3.  Join Types

Join Type Explanation

Left Outer Keeps all records in the upper dataset in the Merge dialog (the dataset that was

active when you began the merge operation). Any matching rows (those that share

common values in the join columns) from the second dataset are kept. All other rows

from the second dataset are discarded

Right Outer Keeps all records in the lower dataset in the Merge dialog (the dataset that was not

active when you began the merge operation). Any matching rows (those that share

common values in the join columns) from the upper dataset are kept. All other rows

from the upper dataset (the dataset that was active when you began the merge

operation) are discarded

Full Outer All rows from both queries are retained in the resulting dataset. Any records that do

not share common values in the join field(s) contain blanks in certain columns

Inner Only joins queries where there is an exact match on the column(s) that are selected

for the join. Any rows from either query that do not share common values in the join

column(s) are discarded

Left Anti Keeps only rows from the upper (first) query

Right Anti Keeps only rows from the lower (second) query

Chapter 8 Restructuring Data

250

�Use the Original Column Name as the Prefix

You will probably find that some columns from joined queries can have the same names

in both source datasets. It follows that you need to identify which column came from

which dataset. If you leave the check box selected for the “Use original column name as

prefix” merge option (which is the default), any merged columns will include the source

query name to help you identify the data more accurately.

If you find that these longer column names only get in the way, you can unselect this

check box. This will leave the added columns from the second query with their original

names. However, because Power Query cannot accept duplicate column names, any

new columns will have .1, .2, and so forth added to the column name.

�Search Columns to Expand

If you are merging a query with a second query that contains a large number of columns,

then it can be laborious to scroll down to locate the columns that you want to include.

To narrow your search, you can enter a few characters from the name of the column that

you are looking for in the Search columns to aggregate box. The more characters you

type, the fewer matching columns are displayed in the Expansion popup dialog.

�Joining on Multiple Columns
In the examples so far, you only joined queries on a single column. While this may be

possible if you are looking at data that comes from a clearly structured source (such

as a relational database), you may need to extend the principle when joining queries

from diverse sources. Fortunately, Power Query allows you to join queries on multiple

columns when the need arises.

As an example of this, the sample data contains a file that I have prepared as an

example of how to join queries on more than one column. This sample file contains data

from the sources that you saw in previous chapters. However, they have been modeled

as a data warehouse star schema. To complete the model, you need to join a dimension

named Geography to a fact table named Sales so that you can add the field GeographySK

to the fact table. However, the Sales table and the Geography table share three fields

(Country, Region, and Town) that must correspond for the queries to be joined. The

following explains how to perform a join using multiple fields:

Chapter 8 Restructuring Data

251

	 1.	 In an Excel file, in the Data ribbon, click Get Data ➤ From

File ➤ From Workbook and connect to the Excel file C:\

DataMashupWithExcelSamples\StarSchema.xlsx.

	 2.	 Check the Select multiple items check box.

	 3.	 Select the two worksheets (Geography and Sales).

	 4.	 Click Transform Data to open the Query Editor.

	 5.	 Select the Sales query from the list of existing queries from the

Queries pane on the left of the Power Query window.

	 6.	 In the Home ribbon, click the Merge Queries button. The Merge

dialog will appear.

	 7.	 In the popup list of queries, select Geography as the second query

to join to the first (upper) query.

	 8.	 Select Inner (only matching rows) from the Join Kind popup.

	 9.	 In the upper list of fields (taken from the Sales table), Ctrl-click the

fields CountryName and Region, in this order. A small number will

appear to the right of each column header indicating the order

that you selected the columns.

	 10.	 In the lower list of fields (taken from the Sales table), Ctrl-click the

fields CountryName and Region, in this order. A small number will

appear to the right of each column header indicating the order

that you selected the columns.

	 11.	 Verify that you have a reasonable number of matching rows in the

information message at the bottom of the dialog. The dialog will

look like Figure 8-9.

Chapter 8 Restructuring Data

252

	 12.	 Click OK.

You can then continue restructuring your data. In this example, that would be adding

the GeographySK field to the Sales query and then removing the Country, Region, and

Town fields from the Sales query, for instance.

There is no real limit to the number of columns that can be used when joining

queries. It will depend entirely on the shape of the source data. However, each column

used to define the join must exist in both datasets, and each pair of columns must be of

the same (or a similar) data type.

�Preparing Datasets for Joins
You could have to carry out a little preparatory work on real-world datasets before

joining queries. More specifically, any columns that you join have to be the same basic

data type. Put simply, you need to join text-based columns to other text-based columns,

Figure 8-9.  Joining queries using multiple columns

Chapter 8 Restructuring Data

253

number columns to number columns, and date columns to date columns. If the columns

are not the same data type, you receive a warning message when you try to join the

columns in the Merge dialog.

Consequently, it is nearly always a good idea to take a look at the columns that you

will use to join queries before you start the merge operation itself. Remember that data

types do not have to be identical, just similar. So a decimal number type can map to a

whole number, for instance.

You might also have to cleanse the data in the columns that are used for joins before

attempting to merge queries. This could involve the following techniques that you

learned in Chapter 7:

•	 Removing trailing or leading spaces in text-based columns

•	 Isolating part of a column (either in the original column or as a new

column) to use in a join

•	 Verifying that appropriate data types are used in join columns

�Correct and Incorrect Joins
Merging queries is the one data restructuring operation that is often easier in theory

than in practice, unfortunately. If the source queries were based on tables in a relational

or even dimensional database, then joining them could be relatively easy, as a data

architect will (hopefully) have designed the database tables to allow for them to be

joined. However, if you are joining two completely independent queries, then you could

face several major issues:

•	 The columns do not map.

•	 The columns map, but the result is a massive table with duplicate

records.

Let’s take a look at these possible problems.

Chapter 8 Restructuring Data

254

�The Columns Do Not Map

If the columns do not map (i.e., you have joined the data but get no resulting records),

then you need to take a close look at the data in the columns that you are using to

establish the join. The questions you need to ask are as follows:

•	 Are the values in the two queries the same data type?

•	 Do the values really map—or are they different?

•	 Are you using the correct columns?

•	 Are you using too many columns and so specifying data that is not in

both queries?

�The Columns Map, but the Result Is a Massive Table
with Duplicate Records

Joining queries depends on isolating unique data in both source queries. Sometimes a

single column does not contain enough information to establish a unique reference that

can uniquely identify a row in the query.

In these cases, you need to use two or more columns to join queries—or else rows

will be duplicated in the result. Therefore, once again, you need to look carefully at the

data and decide on the minimum number of columns that you can use to join queries

correctly.

Tip A comment at the bottom of the Merge dialog tells you how many records
match between the two tables. This can be a valid and useful indicator of whether
you have selected the correct join columns and an appropriate join type.

�Examining Joined Data
Joining data tables is not always easy. Neither is deciding if the outcome of a merge

operation will produce the result that you expect. So Power Query includes a solution

to these kinds of dilemma. It can help you more clearly see what a join has done. More

specifically, it can show you for each record in the first query exactly which rows are

joined from the second query.

Chapter 8 Restructuring Data

255

Do the following to see this in action:

	 1.	 Carry out steps 1 through 10 in the example you saw earlier

(section “Joining on Multiple Columns”).

	 2.	 Scroll to the right in the data table. You will see the new column

named Geography (as shown in Figure 8-10).

Figure 8-10.  Joined data

	 3.	 Click to the right of the word Table in the row where you want to

see the joined data. Note that you must not click the word Table.

A second table will appear under the main query’s data table

containing the data from the second query that is joined for this

particular row. Figure 8-10 shows an example of this.

This technique is as simple as it is useful. There are nonetheless a few comments that

I need to make:

•	 You can resize the lower table (and consequently display more or less

data from the second joined table) by dragging the bottom border of

the top data table up or down.

Chapter 8 Restructuring Data

256

•	 Clicking to the right of the word Table in the NewColumn column will

enable the Expand and Aggregate buttons in the Transform ribbon.

•	 Clicking the word Table in the NewColumn column adds a new step

to the query that replaces the source data with the linked data. You

can also do this by right-clicking inside the NewColumn column and

selecting Drill Down.

Note  Drilling down into the merged table in effect limits the query to the row(s)
of the subtable. Consequently, you have to delete this step if you want to access all
the data in the merged tables.

�Appending Data
Not all source data is delivered in its entirety in a single file or as a single database table.

You may be given access to two or more tables or files that have to be loaded into a single

table in Excel or Power Pivot. In some cases, you might find yourself faced with hundreds

of files—all text, CSV, or Excel format—and the requirement to load them all into a single

table that you will use as a basis for your analysis. Well, Power Query can handle these

eventualities, too.

�Adding the Contents of One Query to Another
In the simplest case, you could have two data sources that are structurally identical

(i.e., they have the same columns in the same order), and all that you have to do is add

one to another to end up with a query that outputs the amalgamated content of the two

sources. This is called appending data, and it is easy, provided that the two data sources

have identical structures; this means

•	 They have the same number of columns.

•	 The columns are in the same order.

•	 The data types are identical for each column.

•	 The columns have the same names.

Chapter 8 Restructuring Data

257

As long as all these conditions are met, you can append the output of queries (which

Power Query also calls Tables and many people, including me, refer to as datasets) one

into another. The queries do not have to have data that comes from identical source

types, so you can append the output from a CSV file to data that comes from an Oracle

database, for instance. As an example, we will take two text files and use them to create

one single output:

	 1.	 Create queries to load each of the following text files into

Excel worksheets. As this was explained in Chapter 2,

I will not repeat the principles here. Both files are in the

C:\DataMashupWithExcelSamples\MultipleIdenticalFiles folder:

	 a.	 Colours_01.txt

	 b.	 Colours_02.txt

	 2.	 Name the queries Colours_01 and Colours_02. You can see the

contents of these two queries in Figure 8-11.

Figure 8-11.  Source data for appending

	 3.	 Open one of the queries (I use Colours_01, but either will do)

by double-clicking one of the query names in the Queries &

Connections pane. This will open the Power Query Editor.

	 4.	 Click the arrow to the right of the Append Queries button in the

Power Query Editor Home ribbon and select Append queries as

new. The Append dialog will appear.

Chapter 8 Restructuring Data

258

	 5.	 Ensure that the Two tables radio button is selected.

	 6.	 From the Select Table to Append popup, choose the query

Colours_02. The dialog will look like the one in Figure 8-12.

Figure 8-13.  A new query containing appended data

Figure 8-12.  The Append dialog

	 7.	 Click OK. The data from the two output tables is appended in

a new query. You can see an example of the resulting output in

Figure 8-13.

You can now continue with any modifications that you need to apply. You will

notice that the column names are not repeated as part of the data when the tables are

appended one to the other.

Chapter 8 Restructuring Data

259

One interesting aspect of this approach is that you have created a link between the

two source tables and the new query. This means that when you refresh the source data,

not only are the data in the tables Colours_01 and Colours_02 updated but the “derived”

query that you just created is updated as well.

�Appending the Contents of Multiple Queries
The Query Editor does not limit you to appending only two files at once. You can (if you

really need to) append a virtually limitless number of identical files.

Moreover, you can append Excel files just as easily as you can append text or CSV

files—as the following example shows:

	 1.	 Create queries to load the data in the worksheet named BaseData

in the Excel file BrilliantBritishCars1.xlsx in the folder C:\

DataMashupWithExcelSamples\MultipleIdenticalExcel.

	 2.	 Repeat step 1 to load the data contained in the files

BrilliantBritishCars2.xlsx and BrilliantBritishCars3.xlsx that

are also in the folder C:\DataMashupWithExcelSamples\

MultipleIdenticalExcel.

	 3.	 Double-click the query named BaseData in the Queries &

Connections pane on the right to open the Query Editor.

	 4.	 Click the Append Queries button.

	 5.	 Select the Three or more tables radio button in the Append dialog.

	 6.	 Ctrl-click the tables “BaseData (2)” and “BaseData (3)” in the

Available table(s) list on the left of the dialog.

	 7.	 Click the Add button. You can see what the Append dialog now

looks like in Figure 8-14.

Chapter 8 Restructuring Data

260

	 8.	 Click OK. The data from the query “BaseData (2)” and “BaseData

(3)” will be appended to the current query (BaseData).

Using this technique, you have “compiled” several source tables into a single output

table. It is worth noting that you can

•	 Remove queries from the list of queries to append on the right

by clicking the query (or Ctrl-clicking multiple queries) and

subsequently clicking the cross icon on the right of the dialog.

•	 You can alter the load order of queries by clicking the query to move

and then clicking the up and down chevrons on the right of the dialog.

�Changing the Data Structure
Sometimes your requirements go beyond the techniques that we have seen so far when

discussing data cleansing and transformation. Some data structures need more radical

reworking, given the shape of the data that you have acquired. I include in this category

the following:

•	 Unpivoting data

•	 Pivoting data

•	 Transforming rows and columns

Figure 8-14.  Appending multiple queries

Chapter 8 Restructuring Data

261

Each of these techniques is designed to meet a specific, yet frequent, need in data

loading, and all are described in the next few pages.

�Unpivoting Tables
From time to time, you may need to analyze data that has been delivered in a “pivoted”

or “denormalized” format. Essentially, this means that information that really should

be in a single column has been broken down and placed across several columns. An

example of the first few rows of a pivoted dataset is given in Figure 8-15 and can be found

in the file C:\DataMashupWithExcelSamples\PivotedDataSet.xlsx.

Figure 8-15.  A pivoted dataset

Chapter 8 Restructuring Data

262

To analyze this data correctly, we really need the makes of the cars to be switched

from being column titles to becoming the contents of a specific column. Fortunately, this

is not hard at all:

	 1.	 In a new Excel file, click Get Data ➤ From File ➤ From

Excel to connect to the table PivotedCosts from the C:\

DataMashupWithExcelSamples\PivotedDataSet.xlsx file into

Power Query. Be sure not to load the data, but to click Transform

Data from the Navigator.

	 2.	 Ensure that the first row is set to be the table headers.

	 3.	 In the Query Editor, select all the columns that you want to

unpivot. In this example, this means all columns except the first

one (all the makes of cars).

	 4.	 In the Transform ribbon, click the Unpivot Columns button

(or right-click any of the selected columns and choose Unpivot

Columns from the context menu). The table is reorganized and

the first few records look as they do in Figure 8-16. Unpivoted

Columns is added to the Applied Steps list.

Figure 8-16.  An unpivoted dataset

Chapter 8 Restructuring Data

263

	 5.	 Rename the columns that Power Query has named Attribute and

Value.

The data is now presented in a standard tabular way, and so it can be used to create a

data model (or loaded into an Excel worksheet) to serve as the basis for further analysis.

Note T he Unpivot button contains another menu option that is displayed if you
click the small triangle to the right of the Unpivot button. This is the Unpivot Other
Columns option that will switch the contents of columns into rows for all the
columns that are not selected when you run the transformation.

�Unpivot Options

There are a couple of available options when you unpivot data using the Unpivot

Columns button popup in the Transform ribbon:

•	 Unpivot Other Columns: This will add the contents of all the other

columns to the unpivoted output.

•	 Unpivot Only Selected Columns: This will only add the contents of any

preselected columns to the unpivoted output.

Note A s is the case with so many of the techniques that you apply using the
Query Editor, it is really important to select the appropriate column(s) before
carrying out pivot and unpivot operations.

�Pivoting Tables
On some occasions, you may have to switch data from columns to rows so that you

can use it efficiently. This kind of operation is called pivoting data. It is—perhaps

unsurprisingly—very similar to the unpivot process that you saw in the previous section.

The resulting data is often called a “crosstab” or “pivot table.”

Chapter 8 Restructuring Data

264

	 1.	 Follow steps 1 through 3 of the previous section so that you end up

with the table of data that you can see in Figure 8-15.

	 2.	 Click inside the column Attribute.

	 3.	 In the Transform ribbon, click the Pivot Column button. The Pivot

Column dialog will appear.

	 4.	 Select Value (the column of figures) as the values column that is

aggregated by the pivot transformation.

	 5.	 Expand Advanced options and ensure that Sum is selected as the

Aggregate Value Function. The Pivot Column dialog will look like

Figure 8-17.

Figure 8-17.  The Pivot Column dialog

	 6.	 Click OK. The table is pivoted and looks like Figure 8-18. Pivoted

Column is added to the Applied Steps list.

Chapter 8 Restructuring Data

265

Figure 8-18.  Pivoted data

Figure 8-19.  A dataset needing to be transposed

Note T he Advanced options section of the Pivot Column dialog lets you choose
the aggregation operation that is applied to the values in the pivoted table.

�Transposing Rows and Columns
On some occasions, you may have a source table where the columns need to become

rows and the rows columns. Fortunately, this is a one-click transformation for Power

Query. Here is how to do it:

	 1.	 Connect to the Excel file C:\DataMashupWithExcelSamples\

DataToTranspose.xlsx in the Power Query Editor. You will need to

select Sheet1. You will see a data table like the one in Figure 8-19.

Chapter 8 Restructuring Data

266

	 2.	 In the Transform ribbon, click the Transpose button. The data is

transposed and appears as two columns, just like the CountryList.

txt file that you saw in Chapter 2.

	 3.	 Rename the resulting columns.

�Loading Data from Inside the Query Editor Directly
There will doubtless be times when you will want to extend an existing data

transformation process and add a new query to any existing queries that you have

already created in Power Query. Fortunately, you can do this directly from inside the

Query Editor without switching back to Excel.

	 1.	 In the Query Editor, expand the Queries pane on the left (unless it

is already displayed).

	 2.	 Right-click inside Queries pane.

	 3.	 Select New Query ➤ File ➤ Text/CSV. You can see this popup

menu in Figure 8-20.

Figure 8-20.  The popup menu to add further queries directly inside the Power
Query Editor

	 4.	 Load the CSV file Countries.csv, as you learned in Chapter 2.

A new query will be added to the Queries pane in the Power Query Editor as well as

in the Connections & Queries pane in Excel.

Chapter 8 Restructuring Data

267

This technique, although somewhat hidden, can be particularly useful as it avoids

you having to close the Query Editor to create a new query—only to return to the Query

Editor to continue working. All the data source options that were available in the Excel

Get Data button are present when creating new queries inside the Query Editor.

Note A s you are already inside the Query Editor, there is no Transform Data
button when connecting to a new data source. You are, to all intents and purposes,
already transforming the data.

�Error Display
Sometimes source data may be clearly erroneous. In these cases, Power Query will flag

cells that contain obvious errors. It does not presume to modify the data—after all, the

data might be useful even if it is flagged as containing errors or anomalies.

However, it can help you to apply some basic data cleansing. To see how errors are

displayed

	 1.	 Open a new, blank Excel workbook.

	 2.	 Click Data ➤ Get Data ➤ From File ➤ From Workbook.

	 3.	 Select the Excel file SampleErrors.xlsx and click Import.

	 4.	 Select Sheet1 and click Transform Data to display the data in the

Power Query Editor.

	 5.	 Click inside the column Price and, in the Home ribbon, set the

data type to decimal number.

	 6.	 Click Replace current in the Change Column Type dialog that

appears. Two of the rows will display errors, as shown in Figure 8-21.

Figure 8-21.  Displaying errors

Chapter 8 Restructuring Data

268

In some datasets, the data that is flagged as being an error could be the data that

you want to examine in greater detail. The point is that you can see potential errors and

decide whether to remove them (as described later) or to return to the source data and

correct them before reloading the data.

�Removing Errors
Assuming that you do not need records that Power Query has flagged as containing an

error, you can remove all such records in a single operation:

	 1.	 Click inside the column containing errors; or if you want to

remove errors from several columns at once, Ctrl-click the titles of

the columns that contain the errors.

	 2.	 Click the popup triangle in the Remove Rows button in the Home

ribbon. The popup menu will appear.

	 3.	 Click Remove errors. Any records with errors flagged in the

selected columns are deleted. Removed Errors is added to the

Applied Steps list.

You have to be very careful here not to remove valid data. Only you can judge, once

you have taken a look at the data, if an error in a column means that the data can be

discarded safely. In all other cases, you would be best advised to look at cleansing the

data or simply leaving records that contain errors in place. The range and variety of

potential errors are as vast as the data itself.

�Viewing Errors
If you save and close a query that contains errors, the Queries & Connections pane will

indicate the number of errors for each query—as shown in Figure 8-22.

Figure 8-22.  Displaying queries with errors in the Queries & Connections pane

Chapter 8 Restructuring Data

269

Clicking the errors link (in blue in the query) will open the Query Editor and display

the error records only. You can see this in Figure 8-23.

Figure 8-23.  Displaying error records only

�Data Transformation Approaches
I quite understand that you may be bewildered at the sheer number of available

transformation options. So it may help, at this point, to remember a few key principles:

•	 If in doubt, right-click the column that you want to transform. This

will list the most common available options in the context menu.

•	 To alter existing data, use the Transform menu.

•	 To add a new column, use the New Column menu.

•	 Remember that you can “unwind” your modifications by deleting

steps in the data transformation process.

�Conclusion
This chapter showed you how to structure your source data into a valid data table from

one or more potential sources. Among other things, you saw how to pivot and unpivot

data, to fill rows up and down with data, as well as how to transpose rows and columns.

Possibly the most important thing that you have learned is how to join individual

queries so that you can add the data from one query into another. This can involve

looking up data from a separate query or carrying the aggregated results from one query

into another.

Finally, you learned how to identify error records in a query.

Now it is time to push your data transformation skills to the next level and learn

how to set up complex data ingestion and conversion routines. These are the subject of

Chapter 9.

Chapter 8 Restructuring Data

271
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_9

CHAPTER 9

Complex Data Loads
Not all data loads are a matter of simply establishing a connection and applying

transformations to the source data that is, fortunately, already laid out in neatly

structured tables. Sometimes you may want to “push the envelope” when loading data

and prepare more complex source data structures for use in your Excel analytics. By this,

I mean that the source data is not initially in a ready-to-use tabular format and that some

restructuring of the data is required to prepare a clean table of data for use.

To solve these kinds of challenges, this chapter will explain to you how to

•	 Add multiple identical files from a source folder

•	 Select the identical source files to load from a source folder

•	 Load simple JSON structures from a source file containing JSON data

•	 Parse a column containing JSON data in a source file

•	 Parse a column containing XML data in a source file

•	 Load complex JSON files—and select the elements to use

•	 Load complex XML files—and select the elements to use

•	 Convert columns to lists for use in complex load routines

Finally—and purely to complete the overall overview of the Power Query Editor and

its capabilities—I will mention how to

•	 Reuse recently used queries

•	 Modify the list of recently used queries

•	 Export data from the Power Query Editor

Any sample files used in this chapter are available for download from the Apress

website as described in Appendix A.

https://doi.org/10.1007/978-1-4842-6018-0_9#ESM

272

�Adding Multiple Files from a Source Folder
Now let’s consider an interesting data ingestion challenge. You have been sent a

collection of text files, possibly downloaded from an FTP site or received by email, and

you have placed them all into a specific directory. However, you do not want to have

to carry out the process that you saw in Chapter 2 and load files one by one if there

are several hundred files—and then append all these files individually to create a final

composite table of data (as you saw in Chapter 8).

Here is a much more efficient method to achieve this objective.

Note  Query Editor can only load multiple files if all the files are rigorously
identical. This means ensuring that all the columns are in the same order in each
file and have the same names.

	 1.	 Create a new Excel file.

	 2.	 In the Data ribbon, click Get Data ➤ From File ➤ From Folder.

The Folder dialog is displayed.

	 3.	 Click the Browse button and navigate to the folder

that contains the files to load. In this example, it is C:\

DataMashupWithExcelSamples\MultipleIdenticalFiles. You can

also paste in, or enter, the folder path if you prefer. The Folder

dialog will look like Figure 9-1.

Figure 9-1.  The Folder dialog

Chapter 9 Complex Data Loads

273

	 4.	 Click OK. The file list window opens. The contents of the folder

and all subfolders are listed in tabular format, as shown in

Figure 9-2.

	 5.	 Click the popup arrow on the right of the Combine button and

select Combine & Transform Data. The Combine Files dialog will

appear, as shown in Figure 9-3. Here you can select which of the

files in the folder is the model for the files to be imported.

Figure 9-2.  The folder contents in Power Query

Chapter 9 Complex Data Loads

274

	 6.	 Click OK. The Power Query Editor will display the imported data.

This is shown in Figure 9-4.

Figure 9-3.  The Combine Files dialog

Figure 9-4.  Data loaded from a folder

Chapter 9 Complex Data Loads

275

	 7.	 Click Close & Load. The data from all the source files will be

loaded into the Excel data model.

As you can see, Power Query has added an extra column to the output containing the

name of the file that contained each source record. You can remove this column if you wish.

Note  The other options in the Combine Files dialog are explained in Chapter 2.

�Filtering Source Files in a Folder
There will be times when you want to import only a subset of the files from a folder.

Perhaps the files are not identical or maybe you simply do not need some of the available

files in the source directory. Whatever the reason, here is a way to get Power Query to

do the work of trawling through the directory and only loading files that correspond to

a file name or extension specification you have indicated, for instance. In other words,

the Query Editor allows you to filter the source file set before loading the actual data. In

this example, I will show you how to load multiple Excel files from a directory containing

both Excel and text files.

	 1.	 Carry out steps 1 through 5 from the section “Adding Multiple

Files from a Source Folder” earlier in this chapter to display

the contents of the folder containing the files you wish to

load. In this scenario, it is C:\DataMashupWithExcelSamples\

MultipleNonIdentical.

	 2.	 Click Transform Data. The Query Editor window will open and

display the list of files in the directory and many of their attributes.

You can see an example of this in Figure 9-5.

Chapter 9 Complex Data Loads

276

	 3.	 As you want to load only Excel files, and avoid files of any other

type, click the filter popup menu for the column title Extension

and uncheck all elements except .xlsx. This is shown in Figure 9-6.

Figure 9-6.  Filtering file types when loading multiple identical files

Figure 9-5.  Displaying file information when loading multiple files

Chapter 9 Complex Data Loads

277

	 4.	 Click OK. You will now only see the Excel files in the Query Editor.

	 5.	 Click the Expand icon (two downward-facing arrows) to the

right of the first column title; this column is called Content, and

every row in the column contains the word Binary. Power Query

will display the Combine Files dialog that you saw previously in

Figure 9-3.

	 6.	 Select the file from those available that you want to use as the

sample file for the data load.

	 7.	 Select the BaseData worksheet as the structure to use for the load.

	 8.	 Click Skip files with errors. This time, the dialog will look like

Figure 9-7.

Figure 9-7.  Selecting the source data when loading multiple Excel files

	 9.	 Click OK. Power Query Editor will load all the files and display the

result.

The contents of all the source files are now loaded into the Power Query Editor

and can be transformed and used like any other dataset. This might involve removing

superfluous header rows (as described in the next but one section). What is more, if ever

Chapter 9 Complex Data Loads

278

you add more files to the source directory, and then click Refresh in the Home ribbon, all

the source files that match the filter selection are reloaded, including any new files added

to the specified directory since the initial load that match the filter criteria.

Note  When loading multiple Excel files, you need to be aware that the data
sources (whether they are worksheets, named ranges, or tables) must have the
same name in all the source files or the data will not be loaded.

�Displaying and Filtering File Attributes
When you display the contents of a folder in the Query Editor, you see a set of file

attributes that you can use to filter data. These cover basic elements such as

•	 File name

•	 File extension

•	 Folder path

•	 Date created

•	 Date last accessed

•	 Date modified

However, there are many more attributes that are available to describe files that you

can access simply by displaying them in the Query Editor. Here is how you can do this:

	 1.	 Carry out steps 1 and 2 from the previous section.

	 2.	 Display the available attributes by clicking the expand icon (the

double-headed arrow) at the right of the attribute column. The list

of available attributes will be displayed, as shown in Figure 9-8.

Chapter 9 Complex Data Loads

279

	 3.	 Select the attributes that you want to display from the list and

click OK.

Each attribute will appear as a new column in the Query Editor. You can now filter on

the columns to select files based on the expanded list of attributes.

Note  You can also filter on directories, dates, or any of the file information that is
displayed. Simply apply the filtering techniques that you learned in Chapter 6.

Figure 9-8.  Adding file attributes for file selection

Chapter 9 Complex Data Loads

280

�Removing Header Rows After Multiple File Loads
If the source files contained header rows that were loaded for each source file, here is a

practical way to remove them—fast—from the data:

	 1.	 If (but only if) each file contains header rows, then scroll down

through the resulting table until you find a title element. In this

example, it is the word ColourID in the ColourID column.

	 2.	 Right-click ColourID and select Text Filters ➤ Does Not Equal. All

rows containing superfluous column titles are removed.

Note  If your source directory only contains the files that you want to load, then
step 2 is unnecessary. Nonetheless, I always add steps like this in case files of the
“wrong” type are added later, which would cause any subsequent process runs to
fail. Equally, you can set filters on the file name to restrict the files that are loaded.

�Combining Identically Structured Files
Power Query can also combine source files in a way that is slightly different to the

technique that you saw previously in this chapter. This technique will also work with text,

CSV, fixed-width, XML, or JSON files.

	 1.	 Carry out steps 1 through 5 in the section “Adding Multiple

Files from a Source Folder” to display the contents of the folder

containing the files you wish to load. In this scenario, it is C:\

DataMashupWithExcelSamples\MultipleIdenticalFiles.

	 2.	 Click the column named Content.

	 3.	 In the Power Query Home ribbon, click the Combine Files button.

The Combine Files dialog (that you saw in Figure 9-7) will appear.

	 4.	 Click OK.

Power Query will evaluate the format of the source files and append all the source

files into a single query.

Chapter 9 Complex Data Loads

281

Note P ower Query will create a set of helper queries to carry out this operation.
If you expand the Power Query Queries pane, you will see the new queries
that it has added. These queries will also be displayed in the Excel Queries &
Connections pane.

�Loading and Parsing JSON Files
More and more data is now being exchanged in a format called JSON. This stands for

JavaScript Object Notation, and it is considered an efficient and lightweight way of

transferring potentially large amounts of data. A JSON file is essentially a text file that

contains data structured in a specific way.

Now, while Power Query can connect very easily to JSON data files (they are only a

kind of text file, after all), the data they contain are not always instantly comprehensible.

So you will now learn how to load the file and then see how this connection can be

tweaked to convert it into meaningful information. Transforming the source text into a

comprehensible format is often called parsing the data.

To connect to a JSON file and parse the data it contains into a usable table:

	 1.	 In the Data ribbon, click Get Data ➤ From File ➤ From JSON.

	 2.	 Select the file C:\DataMashupWithExcelSamples\Colors.json, and

click Import. You will see a list of records like the one shown in

Figure 9-9.

Figure 9-9.  A JSON file after initial import

Chapter 9 Complex Data Loads

282

	 3.	 You will see that the Query Editor has added the List Tools

Transform ribbon to the menu bar. This ribbon is explained in

detail in the next section. Click the To Table button in this ribbon.

The To Table dialog will appear, as shown in Figure 9-10.

Figure 9-10.  The To Table dialog

Figure 9-11.  A JSON file converted to a table

	 4.	 Click OK. The list of data will be converted to a table. This means

that it now shows the Expand icon at the right of the column title,

as you can see in Figure 9-11.

	 5.	 Click the Expand icon to the right of the column title, and in the

popup dialog, uncheck “Use original column name as prefix.”

	 6.	 Click OK. The contents of the JSON file now appear as a standard

dataset, as you can see in Figure 9-12.

Chapter 9 Complex Data Loads

283

Although not particularly difficult, this process may seem a little counterintuitive.

However, it certainly works, and you can use it to process complex JSON files so that you

can use the data they contain in Excel.

�The List Tools Transform Ribbon
Power Query considers some data to be lists, not tables of data. It handles lists slightly

differently and displays a specific ribbon to modify list data. The List Tools Transform

ribbon is explained in Figure 9-13 and Table 9-1.

Figure 9-12.  A JSON file transformed into a dataset

Figure 9-13.  The List Tools Transform ribbon

Chapter 9 Complex Data Loads

284

�Parsing XML Data from a Column
Some data sources, particularly database sources, include XML data actually inside a

field. The problem here is that XML data is interpreted as plain text by Power Query

when the data is loaded. If you look at the AvailableColors column that is highlighted in

Figure 9-14, you can see that this is not particularly useful or even comprehensible.

So once again, Power Query has a solution to this kind of issue. To demonstrate

how to convert this kind of text into usable data, you will find a sample Excel file (C:\

DataMashupWithExcelSamples\XMLInColumn.xlsx) that contains some XML data as a

column. Proceed as follows:

	 1.	 In the Data ribbon, click Get Data ➤ From File ➤ From Workbook.

	 2.	 Select the file XMLInColumn.xlsx and click Import.

	 3.	 Select the Sales table on the left of the Navigator and click

Transform Data to switch to the Query Editor.

	 4.	 Scroll to the right of the dataset and select the last column:

AvailableColors. The Query Editor looks like Figure 9-14.

Table 9-1.  The List Tools Transform Ribbon Options

Option Description

To Table Converts the list to a table structure

Keep Items Allows you to keep a number of items from the top or bottom of the list or a

range of items from the list

Remove Items Allows you to remove a number of items from the top or bottom of the list or a

range of items from the list

Remove Duplicates Removes any duplicates from the list

Reverse Items Reverses the list order

Sort Sorts the list lowest to highest or highest to lowest

Statistics Returns calculated statistics about the elements in the list

Chapter 9 Complex Data Loads

285

	 5.	 In the Add Column ribbon, click the small triangle in the Parse

button and select XML. A new column will be added to the right. It

will look like Figure 9-15 and will have the title XML.

Figure 9-14.  A column containing XML

Figure 9-15.  An XML column converted to a table column

Chapter 9 Complex Data Loads

286

	 6.	 Click the Expand icon to the right of the XML column title and

uncheck “Use original column name as prefix” in the popup

dialog. Ensure that all the columns are selected and click OK. Two

new columns (or, indeed, as many new columns as there are XML

data elements) will appear at the right of the dataset. The Query

Editor will look like Figure 9-16.

Figure 9-16.  XML data expanded into new columns

	 7.	 Remove the column containing the initial XML data by selecting

the column that contains the original XML and clicking Remove

columns in the context menu.

	 8.	 Rename any new columns to give them meaningful titles.

Using this technique, you can now extract the XML data that is in source datasets

and use it to extend the original source data.

�Parsing JSON Data from a Column
Sometimes you may encounter data containing JSON in a field, too. The technique to

extract this data from the field inside the dataset and convert it to columns is virtually

identical to the approach that you saw in the previous section for XML data.

Chapter 9 Complex Data Loads

287

Given that the approach is so similar and is not far removed from what you saw

previously when importing JSON files, I will only provide a screenshot for the final result

of the process. Here you will be able to see the source JSON as well as the columns of

data that were extracted from the JSON and added to the dataset.

	 1.	 Follow steps 1 through 4 from the previous example, only use

the file C:\DataMashupWithExcelSamples\JSONInColumn.xlsx.

Select the only worksheet in this file: Sales.

	 2.	 Scroll to the right of the dataset and select the last column:

AvailableColors.

	 3.	 In the Add Column ribbon, click Parse ➤ JSON. A new column

will be added to the right and will have the title JSON.

	 4.	 Click the Expand icon to the right of the JSON column title and

uncheck “Use original column name as prefix” in the popup

dialog. Ensure that all the columns are selected and click OK. Two

new columns (or, indeed, as many new columns as there are JSON

data elements) will appear at the right of the dataset. The Query

Editor will look like Figure 9-17.

Figure 9-17.  JSON data expanded into new columns

Chapter 9 Complex Data Loads

288

	 5.	 Delete the column containing the initial JSON data.

	 6.	 Rename any new columns if this is necessary.

Admittedly, the structure of the JSON data in this example is extremely simple.

Real-world JSON data could be much more complex. However, you now have a starting

point upon which you can build when parsing JSON data that is stored in a column of a

dataset.

�Complex JSON Files
JSON files are not always structured as simplistically as the Colors.json file that you saw

a few pages ago. Indeed, JSON files can contain many sublevels of data, structured into

separated nodes. Each node may contain multiple data elements grouped together in

a logical way. Often you will want to select “sublevels” of data from the source file—or

perhaps only select some sublevel elements and not others.

This section shows you how to select the data elements that interest you from a

complex JSON structure. Specifically, the sample source data file (CarSalesJSON_

Complex.json) contains a “root” level which displays core data such as the invoice

number, sale date, and sale price (among other elements) and three “sublevels” that

contain information on

•	 The vehicle

•	 The finance data

•	 The customer

The challenge here will be to “flatten” the data from the Vehicle and FinanceData

nodes into standard columns that can then be used for analytics.

Note  If you want to get an idea of what a complex JSON file
containing several nested nodes looks like, then simply open the file C:\
DataMashupWithExcelSamples\CarSalesJSON_Complex.json in a text editor.

In this example, you will see how to select elements from one or more (but not all) of

the available data in the source file.

Chapter 9 Complex Data Loads

289

	 1.	 In the Excel ribbon, click Get Data ➤ From File ➤ From

JSON. Navigate to the folder containing the JSON file that you

want to load (C:\DataMashupWithExcelSamples\CarSalesJSON_

Complex.json, in this example).

	 2.	 Click Import. The Query Editor window will appear and

automatically display the Record Tools Convert ribbon. You can

see this in Figure 9-18.

Figure 9-18.  Opening a complex JSON file

	 3.	 Click Into Table from the Record Tools Convert ribbon. The Query

Editor will look like Figure 9-19.

Chapter 9 Complex Data Loads

290

	 4.	 Click the Expand icon at the top right of the Value column and

select Expand to new rows. The Query Editor will look like

Figure 9-20.

Figure 9-19.  A complex JSON file

Chapter 9 Complex Data Loads

291

	 5.	 Click the Expand icon at the top right of the Value column and

uncheck Use original column name as prefix.

	 6.	 Click OK to display all the JSON attributes. The Query Editor

window will look like Figure 9-21. Each column containing

the word “record” is, in fact, a JSON node that contains further

sublevels of data.

Figure 9-20.  Expanding a JSON file

Chapter 9 Complex Data Loads

292

	 7.	 Select the Vehicle column and click the Expand icon at the right of

the column title. The list of available elements that are “nested” at

a lower level inside the source JSON will appear. You can see this

in Figure 9-22.

Figure 9-21.  Viewing the structure of a JSON file

Figure 9-22.  Nested elements in a JSON file

Chapter 9 Complex Data Loads

293

	 8.	 Click OK. The new columns will be added to the data table.

	 9.	 Select the Finance column and click the Expand icon at the right

of the column title. The list of available elements that are “nested”

at a lower level inside the source JSON for this column will appear.

Select only the Cost column and click OK.

	 10.	 Remove the Customer column as we will not be using data from

this column in this example. The Query Editor window will look

like Figure 9-23, where all the required columns are now visible in

the data table.

	 11.	 Click the Close & Load in the Power Query Home menu to return

the “flattened” JSON data to an Excel worksheet.

Note  It is a good idea to click the Load more link in the Expand popup menu
when you are identifying the nested data in a JSON node. This will force Power
Query to scan a larger number of records and return, potentially, a more complete
list of nested fields.

Figure 9-23.  A JSON file after parsing

Chapter 9 Complex Data Loads

294

This approach allows you to be extremely selective about the data that you load from

a JSON file. You can choose to include any column at any level from the source structure.

As you saw, you can select—or ignore—entire sublevels of nested data extremely easily.

This section was only a simple introduction to parsing complex JSON files. As this

particular data structure can contain multiple sublevels of data, and can mix data and

sublevels in each node of the JSON file, the source data structure can be extremely

complex and can contain nodes within nodes within nodes. Fortunately, the techniques

that you just learned can be extended to handle any level of JSON complexity and help

you tame the most potentially daunting data structures.

Note  It is important to “flatten” the source data so that all the sublevels (or
nodes if you prefer) are removed, and the data that they contain is displayed as a
simple column in the query. Otherwise, the data will not be easy to use in Excel.

�Complex XML Files
As is the case with JSON files, XML files can comprise complex nested structures of many

sublevels of data, grouped into separate nodes. The good news is that the Power Query

Editor handles both these data structures in the same way.

The two approaches are so similar that I will not show all the screens—they are

virtually identical to those in the previous section.

	 1.	 In the Excel ribbon, click Get Data ➤ From File ➤ From

XML. Navigate to the folder containing the XML file that you want

to load (C:\DataMashupWithExcelSamples\ComplexXML.xml, in

this example).

	 2.	 Click Import. The Navigator dialog will appear.

	 3.	 Select Sales as the source data table on the left.

	 4.	 Click Transform Data. The Query Editor will appear.

	 5.	 Select the Vehicle column and click the Expand icon at the right of

the column title. The list of available elements that are “nested” at

a lower level inside the source XML will appear.

	 6.	 Uncheck the Use original column name as prefix check box.

Chapter 9 Complex Data Loads

295

	 7.	 Click OK.

	 8.	 Click the Expand icon at the top right of the Finance column and

uncheck the Use original column name as prefix check box.

	 9.	 Click Load more to display a more exhaustive list of data elements.

	 10.	 Click OK. The new columns will be added to the data table.

	 11.	 Select the Customer column and click the Expand icon at the right

of the column title. The list of available elements that are “nested”

at a lower level inside the source XML will appear. Select only the

CustomerName column and click OK.

	 12.	 Click the Close & Load button at the top of the Power Query

window.

As was the case with JSON files, this approach allows you to be extremely selective

about the data that you load from an XML source file. You can choose to include any

column at any level from the source structure. You can select—or ignore—entire

sublevels of nested data extremely easily.

�Convert a Column to a List
Sometimes you will need to use data in a list format. You will see a practical example

of this in Chapter 11 when you learn how to parameterize queries. Fortunately, Power

Query lets you convert a column to a list really easily:

	 1.	 Click Get Data ➤ From File ➤ From Excel and select the Excel file

C:\DataMashupWithExcelSamples\BrilliantBritishCars.xlsx.

	 2.	 Click Import to display the Navigator.

	 3.	 Select the worksheet BaseData and click Transform Data to open

the Query Editor.

	 4.	 Select a column to convert to a list by clicking the column header.

I will use the column Make in this example.

	 5.	 In the Transform ribbon, click Convert to List. The Query Editor

will show the resulting list, as you can see in Figure 9-24.

Chapter 9 Complex Data Loads

296

This list can now be used in certain circumstances when carrying out more advanced

data transformation processes.

�Reusing Data Sources
Over the course of Chapters 2 through 5, you saw how to access data from a wide variety

of sources to build a series of queries across a range of reports. The reality will probably

be that you will frequently want to point to the same sources of data over and over again.

In anticipation of this, the Power Query development team has found a way to make

your life easier.

Excel remembers the most recent data sources that you have used and lets you reuse

them quickly and easily in any report. Here is how:

	 1.	 In the Home ribbon, click the Recent Sources button. A dialog

containing the most recently used data sources will appear. You

can see this in Figure 9-25.

Figure 9-24.  The list resulting from a conversion-to-list operation

Chapter 9 Complex Data Loads

297

	 2.	 Click the source that you want to reconnect to, and continue with

the data load or connection by clicking the Connect button.

�Pinning a Data Source
If you look closely at Figure 9-25, you see that the database connection

ADAM03:CarSalesData is pinned to the top of the Recent Sources dialog, reflecting a

recent database connection that I have made. This allows you to make sure that certain

data sources are always kept on hand and ready to reuse.

Do the following to pin a data source that you have recently used to the menu and

dialog of recent sources:

	 1.	 Click the Recent Sources button in the Data ribbon. The Recent

Sources dialog will appear.

	 2.	 Hover the mouse over a recently used data source. A pin icon will

appear at the right of the data source name.

Figure 9-25.  Recently used sources

Chapter 9 Complex Data Loads

298

	 3.	 Click the pin icon. The data source is pinned to the top of both the

Recent Sources menu and the Recent Sources dialog. A small pin

icon remains visible at the right of the data source name.

Note  To unpin a data source from the Recent Sources menu and the Recent
Sources dialog, all you have to do is click the pin icon for a pinned data source.
This unpins it and it reappears in the list of recently used data sources.

If you so wish, you can also apply the following options when deciding which

elements you want to make appear in the Recent Sources list:

•	 Remove from list

•	 Clear unpinned items from list

�Copying Data from Power Query Editor
Power Query is designed as a data destination. It does not have any data export

functionality as such. You can manually copy data from the Power Query Editor,

however. More precisely, you can copy any of the following:

•	 The data in the query

•	 A column of data

•	 A single cell

In all cases, the process is the same:

	 1.	 Click the element to copy. This can be

	 a.	 The top-left square of the data grid

	 b.	 A column title

	 c.	 A single cell

	 2.	 Right-click and select Copy from the context menu.

You can then paste the data from the clipboard into the destination application.

Chapter 9 Complex Data Loads

299

Note  This process is somewhat limited because you cannot select a range of
cells. And you must remember that you are only looking at sample data in the
Query Editor. As you can simply load the data into Excel from Power Query, I
explain this purely as a minor point that is of limited interest in practice.

�Conclusion
This chapter pushed your data transformation knowledge with the Power Query Editor

to a new level, by explaining how to deal with multiple file loads of Excel- and text-based

data. You then learned ways of handling data from source files that contain complex,

nested source structures—specifically JSON and XML files. You also saw how to parse

JSON and XML elements from columns contained in other data sources.

Then, you learned how to reuse data sources and manage frequently used data

sources to save time. Finally, you learned how to copy sample data resulting from a data

transformation process into other applications.

So now the basic tour of data load and transformation with the Power Query Editor is

over. It is time to move on to more advanced techniques that you can apply to accelerate

and enhance, manage, and structure your data transformation processes and add a

certain level of interactivity. These approaches are the subject of the following two

chapters.

Chapter 9 Complex Data Loads

301
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_10

CHAPTER 10

Organizing and Managing
Queries
Producing a robust and efficient data query is not just about finding the appropriate

load and transform functions and placing them in the correct sequence. It is also about

extending, maintaining, and updating the process. This can be either to correct an error

once the query is being tested or to adapt a query to new requirements. This chapter will

introduce you to some of the techniques that you can apply to handle the various stages

of the query life cycle.

Delivering revelatory analytics can mean sourcing data from a large range and

variety of queries. It may also imply that these queries have to be linked together to

create a cascade of data transformations that prepares the core elements of a practical

and usable data model collated from multiple sources. It follows that you will therefore

need to know how to manage the queries that you create to use them efficiently and to

keep your queries under control in real-world situations.

�Managing the Transformation Process
Pretty nearly all the transformation steps that we have applied so far have been

individual elements that can be applied to just about any data table. However, when

you are carrying out even a simple data load and transform process, you are likely to

want to step through several transformations in order to shape, cleanse, and filter the

data to get the result you want. This is where the Power Query approach is so malleable,

because you can apply most data transformation steps to just about any data table. The

art consists of placing them in a sequence that can then be reused any time that the data

changes to reprocess the new source data and deliver an up-to-date output.

https://doi.org/10.1007/978-1-4842-6018-0_10#ESM

302

The key to appreciating and managing this process is to get well acquainted with the

Applied Steps list in the Query Settings pane. This list contains the details of every step

that you applied, in the order in which you applied it. Each step retains the name that

Power Query gave it when it was created, and each can be altered in the following ways:

•	 Renamed

•	 Deleted

•	 Moved (in certain cases)

The even better news is that, in many cases, steps can be modified. This way you are

not stuck with the choices that you made initially, but have the opportunity of tweaking

and improving individual steps in a process. This can avoid your having to rebuild an

entire sequence of steps in an ETL routine simply by replacing one element in the ETL

process.

In order to experiment with the various ways that you can modify queries, you are

going to need some initial data. So, to start with, I suggest that you use the following

Excel source file: C:\DataMashupWithExcelSamples\CarSalesDataForQueries.xlsx. This

source file contains queries that connect to six source tables in another Excel file, thereby

imitating a real-world scenario (where the data sources could come from multiple

different sources and have different origins: database, text, etc.).

Once you have opened this file, switch to the Query Editor window by double-

clicking any of the existing queries in the Queries & Connections window.

�Modifying a Step
How you alter a step will depend on how the original transformation was applied. This

becomes second nature after a little practice and will always involve first clicking the

step that you wish to modify and then applying a different modification. If you invoke

a ribbon option, such as altering the data type, for instance, then you change the data

type by simply applying another data type directly from the ribbon. If you used an option

that displayed a dialog (such as splitting a column, among others), then you can right-

click the step in the Applied Steps list and select Edit Settings from the context menu.

Alternatively, and if you prefer, you can click the “gear” icon that is displayed to the right

of most (but not all) steps to display a dialog where you can adjust the step settings. This

dialog will show all the options and settings that you applied initially; in it, you can make

any modifications that you consider necessary.

Chapter 10 Organizing and Managing Queries

303

A final possibility that makes it easy to alter the settings for a process is to edit the

formula that appears in the formula bar each time you click a step. This, however,

involves understanding all the complexities of each piece of the code that underpins

the data transformation process. I will provide a short overview of code modification in

Chapter 12.

Tip I f you can force yourself to organize the process that you are writing with
Power Query, then a little forethought and planning can reap major dividends. For
instance, certain tasks, such as setting data types, can be carried out in a single
operation. This means that you only have to look in one place for a similar set
of data transformations. Not just that, but if you need to alter a data type for a
column at a later stage, I suggest that you click the Changed Type step before you
make any further alterations. This way, you extend the original step, rather than
creating other steps—which can make the process more confusing and needlessly
voluminous.

�Renaming a Step
Power Query names steps using the name of the transformation that was applied. This

means that if another similar step is applied later, Power Query uses the same name with

a numeric increment. As this is not always comprehensible when reviewing a sequence

of transformation steps, you may prefer to give more user-friendly names to individual

steps. This is done as follows:

	 1.	 Select the query (or source table or worksheet, if you prefer). I will

use the Clients query in this example.

	 2.	 Right-click the step that you want to rename, Changed Type, for

instance.

	 3.	 Select Rename from the context menu.

	 4.	 Type in the new name. I will use NewDataTypes.

	 5.	 Press Enter.

Chapter 10 Organizing and Managing Queries

304

The step is renamed and the new name will appear in the Applied Steps list in

the Query Settings pane. This way you can ensure that when you come back to a data

transformation process days, weeks, or months later, you are able to understand more

intuitively the process that you defined, as well as why you shaped the data like you did.

Note  You can use upper- or lowercase characters—or a mixture of both—when
naming steps in Power Query. You can also add spaces and special characters.

�Deleting a Step or a Series of Steps
Deleting a step is all too easy, but doing so can have serious consequences. This is

because an ETL process is often an extremely tightly coupled series of events, where

each event depends intimately on the preceding one. So deleting a step can make

every subsequent step fail. Knowing which events you can delete without drastic

consequences will depend on the types of process that you are developing as well as

your experience with Power Query. In any case, this is what you should do if you need to

delete a step:

	 1.	 Place the pointer over the process step that you want to delete.

	 2.	 Click the cross (×) icon that appears.

	 3.	 Select Delete. The Delete Step dialog might appear (if deleting this

step might have unexpectedly negative consequences), as shown

in Figure 10-1.

	 4.	 Confirm by clicking the Delete button. The step is deleted.

Figure 10-1.  The Delete Step dialog

Chapter 10 Organizing and Managing Queries

305

If—and it is highly possible—deleting this step causes issues for the rest of the

process, you will see that the data table is replaced by an error message. This message

will vary depending on the type of error that Power Query has encountered.

When describing this technique, I was careful to state that you might see the Delete

Step dialog. If you are deleting the final step in a sequence of steps, then you will

probably not see it, since there should not be any potentially horrendous consequences;

at worst, you will have to re-create the step. If you are deleting a step in the middle

of a process, then you might want to think seriously about doing so before you cause

a potentially vast number of problems. Consequently, you are asked to confirm the

deletion in these cases.

An alternative technique is to right-click the step that you want to delete and select

Delete. You may still have to confirm the deletion.

If you realize that an error in a process step has invalidated all your work up until the

end of the process, rather than deleting multiple elements one by one, click Delete Until

End from the context menu at step 2 in the preceding exercise.

�Discarding Changes
If, when working with Power Query, you realize at any point that you have just destroyed

hours of work, then (after drawing a deep breath)

	 1.	 Click the close button (the small cross) at the top right of the

Power Query Editor window. The dialog shown in Figure 10-2 will

appear.

Figure 10-2.  The discard changes dialog in Power Query

	 2.	 Click Discard to close Power Query without applying any changes.

Chapter 10 Organizing and Managing Queries

306

Don’t count on using an undo function as you can in other desktop applications. To

lower your blood pressure, you may prefer to save a copy of a file containing an intricate

data transformation process before deleting any steps. You can also make copies of the

entire data transformation process as “M” code—as you will learn in Chapter 12.

�Modifying an Existing Step
Power Query does not try and lock you into a rigid sequence of events when you create a

series of applied steps to create and transform a data flow. This really becomes obvious

when you discover that you need to alter a step in a process.

Suppose, for instance, that you discover that you have loaded a wrong Excel

worksheet when you selected the initial data from an Excel file. You do not want to

repeat the process when you can simply substitute one worksheet name for another.

Assuming that you have opened the Excel workbook CarSalesDataForQueries.xlsx

and have switched to the Query Editor:

	 1.	 Select the query that you want to modify (Clients in this example).

	 2.	 Click the step to modify (in this case, it will be Navigation).

	 3.	 Click the gear (or cog) icon to the right of the step name.

The appropriate dialog will appear. In this case, it will be the

Navigation dialog that you can see in Figure 10-3.

Chapter 10 Organizing and Managing Queries

307

	 4.	 Click the table or worksheet that you want to use instead of the

current dataset (Table1 in this example).

	 5.	 Click OK.

The Query Editor will replace one source dataset with another. It might also add

extra steps to ensure that the data is adapted for use in the query.

As you saw in the previous nine chapters, Power Query offers a vast range of data

ingestion and modification possibilities. So I cannot, here, describe every possible

option as far as modifying an Applied Step is concerned. Nonetheless, the principle is

simple:

•	 If the Query Editor can modify a step, the gear icon will be displayed

to the right of the step name.

Figure 10-3.  The Navigation dialog displayed for step modification

Chapter 10 Organizing and Managing Queries

308

•	 Clicking the modification (the gear) icon will display the dialog that

was used to create the step (even if the step was created automatically

by Power Query)—or a dialog that allows you to modify the step.

Certain steps do not display the modification icon. This is because the step cannot

be modified, only removed (at least, using the Query Editor interface). As an example of

this, add the following step:

	 1.	 Select the query that you want to modify (Clients in this example).

	 2.	 Click the last step.

	 3.	 Right-click the Address2 column and select Remove.

A new step will appear in the Applied Steps list, named Removed Columns. This

step does not have the modification icon. So, for the moment, you can remove it, but not

modify it—at least, not using the graphical user interface. You can, however, modify the

code for a step as you will learn in Chapter 12.

Note  Modifying existing steps is not a “magic bullet.” This is because a series
of data transformations can be highly dependent on a tailored logic that has been
developed for a specific data structure. It follows, for instance, that you can only
replace a data source with another one that has a virtually identical structure.
However, modifying a step can avoid your having to rewrite an entire data flow
sequence in many cases.

�Adding a Step
You can add a step anywhere in the sequence. All you have to do is click the step that

precedes the new step that you want to insert before clicking the icon in any of the

ribbons that corresponds to the new step. As is the case when you delete a step, Power

Query will display an alert warning you that this action could cause problems with the

process from this new step on.

Chapter 10 Organizing and Managing Queries

309

�Altering Process Step Sequencing
It is possible—technically—to resequence steps in a process. However, in my experience,

this is not always practical, since changing the order of steps in a process can cause as

much damage as deleting a step. Nonetheless, you can always try it like this:

	 1.	 Right-click the step that you want to resequence.

	 2.	 Select Move Up or Move Down from the context menu.

I remain pessimistic that this can work miracles, but it is good to know that it is there.

Tip R emember that before tweaking the order in which the process is applied,
clicking any process step causes the table in the Power Query window to refresh to
show you the state of the data up to and including the selected step. This is a very
clear visual guide to the process and how the ETL process is carried out. Indeed,
clicking the steps one after another will “scroll through” the changes in the data
and demonstrate exactly how the while process is structured and works.

�An Approach to Sequencing
Given the array of available data transformation options, you may well be wondering

how best to approach a new ETL project using Power Query. I realize that all projects are

different, but as a rough and ready guide, I suggest attempting to order your project like this:

	 1.	 Load the sample data into Power Query.

	 2.	 Promote or add comprehensible column headers. For example,

you really do not want to be looking at step 47 of a process and

wondering what Column29 is, when it could read (for instance)

ClientName.

	 3.	 Remove any columns that you do not need. The smaller the

dataset, the faster the processing. What is more, you will find

it easier to concentrate on, and understand, the data if you are

only looking at information that you really need. Any columns

that have been removed can be returned to the dataset simply by

deleting or editing the step that removed them.

Chapter 10 Organizing and Managing Queries

310

	 4.	 Alter the data types for every column in the table. Correct data

types are fundamental for many transformation steps and are

essential for filtering, so it’s best to get them sorted out early on.

	 5.	 Filter out any records that you do not need. Once again, the

smaller the dataset, the faster the processing. This includes

deduplication.

	 6.	 Parse any complex JSON or XML elements.

	 7.	 Carry out any necessary data cleansing.

	 8.	 Carry out any necessary transforms.

	 9.	 Carry out any necessary column splits or adding custom columns.

	 10.	 Add any derived columns.

	 11.	 Add any calculations or logical transformations of data.

	 12.	 Handle any error records that the ETL process has thrown up.

Once again, I must stress that this is not a definitive guide. I hope, however, that

it will help you to see “the wood for the trees” when you are creating data load and

transformation processes using Power Query.

�Error Records
Some data transformation operations will cause errors. This can be a fact of life when

mashing up source data. For instance, you could have a few rows in a large dataset

where a date column contains a few records that are texts or numbers. If you convert the

column to a date data type, then any values that cannot be converted will appear as error

values.

�Managing Queries
Once you have used Power Query for any length of time, you will probably become

addicted to creating more and deeper analyses based on wider-ranging data sources.

Inevitably, this will mean learning to manage the data sources that feed into your data

models efficiently and productively.

Chapter 10 Organizing and Managing Queries

311

Fortunately, Power Query comes replete with a small arsenal of query management

tools to help you. These include

•	 Organizing and grouping queries into folders

•	 Duplicating queries

•	 Referencing queries

•	 Documenting queries

•	 Adding a column as a new query

Let’s take a look at these functions, one by one.

Note  Query management is heavily dependent on the Queries pane. Power Query
hides this pane by default, so you will need to display it by clicking the chevron at
the top right of the collapsed Queries pane on the left of the data. What is more,
many of the query management functions are also available directly from inside
Excel in the popup menu of the Queries & Connections pane.

�Organizing Queries
When you have anything from a handful to a few dozen queries that you are using in the

Power Query Editor, you may want to exercise some control over how they are organized.

To begin with, you can modify the order in which queries appear in the Queries pane on

the left of the Power Query Editor window. This lets you override the default order, which

is that the most recently added data source appears at the bottom of the list.

Do the following to change the position of a query in the list:

	 1.	 Display the Queries pane if it is not already visible.

	 2.	 Right-click the query that you want to move.

	 3.	 Select Move Up (or Move Down) from the context menu.

You have to carry out this operation a number of times to move a query up or down

a number of places. So the alternative—dragging queries up and down in the list—is

probably worth using as well.

Chapter 10 Organizing and Managing Queries

312

�Grouping Queries
You can also create custom groups to better organize the queries that you are using in

an Excel file. This will not have any effect on how the queries work. Grouping queries

is simply an organizational technique, and it will not change in any way the data tables

that you see in report mode in Excel. You will, however, see the groups that you created

reflected in the Queries & Connections pane in Excel.

�Creating a New Group

Here is how to create a new group:

	 1.	 Right-click the query that you want to add to a new group. I will

use the Colors query in the Query Editor—opened from the Excel

file CarSalesDataForQueries.xlsx.

	 2.	 Select Move To Group ➤ New Group from the context menu. The

New Group dialog will appear.

	 3.	 Enter a name for the group and (optionally) a description. I will

name the group ReferenceData. The dialog will look something

like Figure 10-4.

	 4.	 Click OK.

The new group is created and the selected query will appear in the group. The

Queries pane will look something like Figure 10-5.

Figure 10-4.  The New Group dialog

Chapter 10 Organizing and Managing Queries

313

Note  By default, all other queries are added to a group named Other Queries.

If you have created dozens of queries, this technique can really help you to manage

a complex data load process. As you might expect, you can expand or close a group by

clicking the triangle to the left of the folder name.

�Renaming Groups

You can rename any groups that you have added.

	 1.	 Right-click the group that you want to rename.

	 2.	 Select Rename from the context menu.

	 3.	 Edit or replace the name.

	 4.	 Press Enter.

Note T he Other Queries group cannot be renamed or deleted. By default, all new
queries will be added to this group. You can also double-click the group to rename
it directly.

Figure 10-5.  The Queries pane with a new group added

Chapter 10 Organizing and Managing Queries

314

�Adding a Query to a Group

To move a query from its current group to another group, you can carry out the following

steps:

	 1.	 Right-click the query that you want to add to another existing

group.

	 2.	 Select Move To Group ➤ Destination Group Name from the

context menu.

The selected query is moved to the chosen group. The group structure will also be

visible in the Queries & Connections pane in Excel.

�Duplicating Queries
If you have done a lot of work transforming data, you could well want to keep a copy

of the original query before trying out any potentially risky alterations to your work.

Fortunately, this is extremely simple.

	 1.	 Right-click the query that you want to copy.

	 2.	 Select Duplicate from the context menu.

The query is copied and the duplicate appears in the list of queries inside the same

group as the source query. It has the same name as the original query, with a number

in parentheses appended. You can always rename it in the Query Settings pane, in the

Queries pane on the left of the Query Editor window, or in the Queries & Connections

pane in Excel itself.

Note  You can copy and paste queries if you prefer. The advantage of this
technique is that you can choose the destination group for the copied query simply
by clicking the folder icon for the required group before pasting the copy of the
query.

Chapter 10 Organizing and Managing Queries

315

�Referencing Queries
If you are building a complex ETL (Extract, Transform, Load) routine, you might

conceivably organize your work in stages to better manage the process. To help you with

this, the Power Query Editor allows you to use the output from one query as the source

for another query. This enables you to break down different parts of the process (e.g.,

structure, filters, then cleansing) into separate queries so that you can concentrate on

different aspects of the transformation in different queries.

To use the output of one query as the source data for another, you need to reference a

query, like this:

	 1.	 Right-click the query that you want to use as the source data for a

new query.

	 2.	 Select Reference from the context menu. A new query is created in

the list of queries in the Queries pane.

	 3.	 Right-click the new query, select Rename, and give it a meaningful

name.

Unless you rename the query, the new query has the same name as the original

query, with a number in parentheses appended. If you click the new query, you see

exactly the same data in the referenced query as you can see if you click the final step in

the source query.

From now on, any modifications that you make in the referenced (source) query

produce an effect on the data that is used as the source for the second query. In other

words, you have created a sequence of queries in a data ingestion process.

In practice, I suspect, you will not want to use two copies of the same query to create

reports. Indeed, if a query is being used as an “intermediate” query, the data that it

contains might not even be fully usable. So you could want to prevent the intermediate

query from outputting data to Excel. To do this:

	 1.	 In the Data ribbon, click Get Data ➤ From File ➤ From Workbook.

	 2.	 Select the file BrilliantBritishCars.xlsx and click Import.

	 3.	 In the Navigator dialog, select the source table BaseData.

	 4.	 Click the popup menu at the right of the Load button and select

Load To. The Import Data dialog will be displayed.

Chapter 10 Organizing and Managing Queries

316

	 5.	 Click Only create connection.

	 6.	 Click OK.

The source query will appear in the Queries & Connections pane, but will be flagged

as Connection only.

Tip  You cannot hide queries in the Queries & Connections pane in Excel—but
you can place reference queries in a custom group to isolate them visually.

You may be wondering why you would want to create “intermediate” queries. Some

ideas are

•	 You want to isolate complex data transformations into more

manageable subsets. You may, for instance, want one intermediate

query that transforms the data while a subsequent query cleanses the

data.

•	 You could want to apply a common set of initial transformations that

then feed into two separate data preparation paths—a detailed view

of the data and an aggregated view.

Note T he way to convert an existing query to a connection only—ready for use
as a reference query—is to delete the worksheet (or Power Pivot sheet) containing
the output data.

�Documenting Queries
In a complex ETL process, it is easy to get confused—or simply forget—which query

does what. Consequently, I always advise documenting queries by adding a meaningful

description.

	 1.	 Right-click the query that you want to annotate.

	 2.	 Select Properties from the context menu. The Query Properties

dialog will appear.

Chapter 10 Organizing and Managing Queries

317

	 3.	 Add a description. The result could be like the dialog shown in

Figure 10-6.

	 4.	 Click OK.

The description that you added is now visible as a tooltip if you hover the cursor over

the query name in the list of queries in the Queries pane of the Query Editor. You will

also see the description in the Peek window for this query if you hover the mouse pointer

over the query in the Queries & Connections pane in Excel.

Note  Clicking Fast Data Load will attempt to load the data faster—but Power
Query could remain unresponsive for some time while the data is loaded.

Figure 10-6.  Adding a description to a query

Chapter 10 Organizing and Managing Queries

318

�Adding a Column as a New Query
There are occasions when you might want to extract a column of data and use it as a

separate query. It could be that you need the data that it contains as reference data for

another query, for example. The following steps explain how you can do this:

	 1.	 In the Queries list on the left, select the query containing the

column that you want to isolate as a new query.

	 2.	 Right-click the title of the column containing the data that you

want to isolate.

	 3.	 Select Add as New Query from the context menu. A new query

is created. It is named after the original query and the source

column.

	 4.	 In the Transform ribbon, click To Table. The To Table dialog will

appear, as you can see in Figure 10-7.

Figure 10-7.  The To Table dialog

	 5.	 Click OK. The new query will become a table of data and will have

the name of the column that you selected.

	 6.	 Rename the query, if you judge this necessary.

You can now use this query in your data model and as part of a linked set of query

processes.

Chapter 10 Organizing and Managing Queries

319

Note A query created in this way is completely disconnected from the source
query from where the data was taken. Put another way, any refresh of the source
data will have no effect on the new query that you created from a column.

�Managing Queries from the Queries &
Connections Pane
You are not obliged to switch to the Query Editor to carry out many of the query

management tasks that you discovered in this chapter. You can perform several

operations directly from the Queries & Connections pane.

For example:

	 1.	 Open the Excel file Chapter10Sample.xlsx, and display the Queries

& Connections pane.

	 2.	 Right-click one of the queries. The popup menu will appear, as

shown in Figure 10-8.

Figure 10-8.  The Queries & Connections pane popup menu

Chapter 10 Organizing and Managing Queries

320

	 3.	 Click the menu option that you want.

As you can see, not all the query management options are available. However, you

can use this context menu to

•	 Create, delete, and modify groups of queries or queries

•	 Move queries between groups and inside groups

•	 Expand and collapse groups

•	 Alter group properties

•	 Copy and paste queries and groups

•	 Duplicate and reference queries

•	 Merge and append queries

•	 Alter query and group properties

•	 Refresh queries

•	 Show the Peek window for a query

Note T he contents of the context menu will vary depending on whether you have
right-clicked a group or an individual query.

�Conclusion
In this chapter, you saw how to manage and extend the contents of the queries that you

can create using Power Query. Specifically, you saw how to modify individual steps in a

data load and transformation process. This ranged from renaming steps to changing the

order of steps in a process—or even altering the specification of what a step actually does.

Then you saw how to manage whole queries. You learned how to rename and group

queries as well as how to chain queries so that the output from one query became the

source of data for another query.

Finally, you learned how to reference—or link—queries to isolate parts of a data

ingestion process or to break down a complex process into manageable parts.

It is now time to learn how to add interactivity to your processes using parameters in

Power Query. You will discover this in the next chapter.

Chapter 10 Organizing and Managing Queries

321
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_11

CHAPTER 11

Parameterizing Queries
Not all data flows are rigid and predictable. There will, inevitably, be cases where you

also want to shape the data ingestion process depending on aspects of the source data.

This can mean parameterizing your queries to allow user interaction or adjusting the

data flow dynamically. Adding parameters to queries enables you to define and apply

specific criteria to certain aspects of query processing.

All the files used in examples in this chapter are available for download from the

Apress website as described in Appendix A.

As parameters are entirely managed inside the Query Editor, you will need to have

the Query Editor open to carry out any of the examples in this chapter.

�Parameterizing Queries
At their heart, parameters are a technique that enables you to

•	 Select a value that can be used in one or more queries to alter the

query flow by injecting a required element into a query step. This

could be a file source or a filter value, for instance.

•	 Restrict the selection of potential parameter values to a predefined

list of options for a user to choose from.

There are currently three basic ways a user can select a parameter before running a

query that will apply the chosen parameter. A parameter can be

•	 A single value that you or the user enters

•	 A selection of a value from a list of possible values that you enter

manually

•	 A selection of a value from a list of possible values that you create

using existing queries

https://doi.org/10.1007/978-1-4842-6018-0_11#DOI

322

It follows that using parameters is a two-step process:

•	 Create a parameter.

•	 Apply it to a query.

A parameter is really nothing more than a specialized type of query. As it is a query,

you can

•	 Load it into the data model (although this is rarely required)

•	 Reference it from another query

•	 Build and modify it just like any other query

This chapter will explain how you can create and apply parameters. This will include

showing you some of the ways that you can apply parameters in the Query Editor to filter

or transform the data.

�Creating a Simple Parameter
At its simplest, a parameter is a value that you store so that you can use it later to assist

you in your data transformation. Here is how you can store a parameter containing a

“True” value ready for use in filtering subsequent datasets:

	 1.	 Open the Excel file C:\DataMashupWithExcelSamples\

CarSalesDataForQueries.xlsx (unless it is already open, of course).

	 2.	 Display the Queries & Connections pane (unless it is already

visible). Double-click any of the queries in the Queries &

Connections pane to open the Query Editor.

	 3.	 In the Query Editor Home ribbon, click the small triangle at

the bottom of the Manage Parameters button, then select New

Parameter from the available menu options. The Parameters

dialog will appear.

	 4.	 Enter DealerParameter as the parameter name and Filter dealer
types as the description.

	 5.	 Ensure that the Required check box is selected.

	 6.	 Choose True/False from the popup list of types.

Chapter 11 Parameterizing Queries

323

	 7.	 Enter True as the Current Value from the popup list. The dialog

will look like the one in Figure 11-1.

	 8.	 Click OK. The new parameter will appear in the Queries list on the

left. You can see this in Figure 11-2.

Figure 11-1.  The Parameters dialog

Chapter 11 Parameterizing Queries

324

For the moment, all you have done is create a parameter and store a value in it. You

will see how to use this parameter in a few pages’ time. As you can see, a parameter is

stored as a type of query in the Power Query Editor Queries pane, and the default value

is displayed after the query name in parentheses.

�Creating a Set of Parameter Values
While a single parameter can always be useful, in reality you are likely to need lists of

potential parameters. This will allow you or other users to choose a parameter value

from a predefined list in certain circumstances. Here is an example of creating a

parameter containing a subset of the available country names used in the sample data:

	 1.	 Using the Excel file that you created in the previous section (the

one based on the Excel file C:\DataMashupWithExcelSamples\

CarSalesOverview.xlsx), open the Query Editor—unless it is

already open.

	 2.	 In the Query Editor Home ribbon, click the small triangle at

the bottom of the Manage Parameters button, then select New

Parameter from the available menu options. The Parameters

dialog will be displayed.

	 3.	 Enter CountriesParameter as the parameter name.

	 4.	 Ensure that the Required check box is selected.

	 5.	 Choose Text from the popup list of types.

	 6.	 In the Suggested Values popup list, select List of values.

Figure 11-2.  A parameter in the Queries list

Chapter 11 Parameterizing Queries

325

	 7.	 Enter the following three values in the grid that has now appeared:

	 a.	 France

	 b.	 Spain

	 c.	 Germany

	 8.	 Select France as the Default Value from the popup list.

	 9.	 Select Spain as the Current Value from the popup list. The dialog

will look like the one shown in Figure 11-3.

Figure 11-3.  The Parameters dialog for a set of options

	 10.	 Click OK. The new parameter will appear in the Queries list on the left.

Chapter 11 Parameterizing Queries

326

Once again, all you have done is create the parameter. You will see how it can be

applied in a couple of pages’ time.

Note A s you can see, any current value that you have chosen will appear in the
Queries pane in parentheses to the right of the parameter name. This is to help you
remember which value is current—and is possibly being used to shape a data flow
process.

�Creating a Query-Based Parameter
Typing lists of values that you can use to choose a parameter is not only laborious, it is

also potentially error-prone. So you can use the data from existing queries to create the

series of available elements that you use in a parameter instead of manually entering lists

of values. Moreover, any lists that you enter manually are completely static. So you will

have to remember to update them if the user requirements change. Parameter lists are,

by contrast, dynamic. That is, they update automatically if the source data changes.

As an example of this, suppose that you want a parameter that contains all the

available makes of car that the company sells:

	 1.	 Using the Excel file C:\DataMashupWithExcelSamples\

CarSalesDataForQueries.xlsx, open the Query Editor by double-

clicking on any of the queries in the Queries & Connections pane.

	 2.	 Select the query Stock in the Queries list.

	 3.	 Right-click the title of the column named Model, and select Add as

New Query. A new query named Model will appear in the Queries

list. This query contains the contents of the column you selected.

	 4.	 In the newly created query, click Remove Duplicates in the

Transform ribbon. The List column will only display unique values.

	 5.	 Rename the newly created query ModelList.

	 6.	 In the Query Editor Home ribbon, click the small triangle at

the bottom of the Manage Parameters button, then select New

Parameter from the available menu options. The Parameters

dialog will be displayed.

Chapter 11 Parameterizing Queries

327

	 7.	 Enter ModelsParameter as the parameter name.

	 8.	 Ensure that the Required check box is selected.

	 9.	 Choose Text from the popup list of types.

	 10.	 In the Suggested Values popup list, select Query.

	 11.	 Select ModelList as the query containing a list of values to use

from the popup list of available lists.

	 12.	 Enter DB7 as the Current Value. The Parameters dialog should

look like the one in Figure 11-4.

Figure 11-4.  The Parameters dialog for a list of options

Chapter 11 Parameterizing Queries

328

	 13.	 Click OK. The new parameter will appear in the Queries list on the

left.

You should now be able to see all three parameters that you have created in the

Queries pane, as shown in Figure 11-5.

Figure 11-5.  Parameters in the Queries list

Note P arameters and lists will appear in Excel in the Queries & Connections
pane. Lists will also normally load to a new Excel worksheet. Unless you define
these as “Connection only” you will need to remember—and to warn users—that
these are not “classic” queries.

Once your parameters have been created, you can quit the Query Editor by clicking

the Close & Load button. Your parameters can now be used to shape a data flow process.

Tip I t is also possible to create parameters “on the fly” (i.e., directly from inside a
dialog that uses a parameter) when you want to use them. However, I find it better
practice—and more practical—to prepare parameters beforehand. This forces you to
think through the reasons for the parameter as well as the potential range of its use.
It can also avoid your making errors when trying to do two different things at once.

�Modifying a Parameter
Fortunately, parameters are not set in stone once they are created. You can easily modify

•	 The structure of a parameter

•	 The selected parameter element (the current value)

Chapter 11 Parameterizing Queries

329

�Modifying the Structure of a Parameter

Should you need to modify the way that a parameter is constructed, one way is to do the

following:

	 1.	 In the Query Editor Home ribbon, click Manage Parameters.

The Parameters dialog will be displayed as seen in the previous

sections.

	 2.	 In the left pane of the dialog, click the parameter that you want to

modify. The parameter definition will appear on the right.

	 3.	 Carry out any required modifications.

	 4.	 Click OK.

Alternatively, you can do this:

	 1.	 Click the parameter in the Queries pane on the left of the Query Editor.

	 2.	 Click the Manage Parameters button. The Parameters dialog will

appear.

	 3.	 Carry out any required modifications.

	 4.	 Click OK.

You can also, if you prefer, right-click a parameter in the Queries pane and select

Manage from the popup menu to display the Parameters dialog.

�Applying a Parameter When Filtering Records
Now that you have seen how parameters are created, it is time to see them in action. As a

first example of applying a parameter, you will see how to use a parameter to filter a query:

	 1.	 Open the file C:\DataMashupWithExcelSamples\

ParametersExample.xlsx. This file contains the three parameters

created previously.

	 2.	 Double-click the Countries query in the Queries & Connections

pane to open the Power Query Editor and select the Countries

dataset. You may need to display the Queries & Connections pane

by clicking Data ➤ Queries & Connections.

Chapter 11 Parameterizing Queries

330

	 3.	 Click the popup menu for the CountryName column on the right

of the field name.

	 4.	 Select Text Filters ➤ Equals. The Filter Rows dialog will appear.

	 5.	 Leave Equals as the first choice.

	 6.	 Click the central popup (between equals and enter or select a

value) and select Parameter from the list. You can see this in

Figure 11-6.

	 7.	 Select CountriesParameter for the third popup. The dialog will

look like the one shown in Figure 11-7.

Figure 11-6.  Selecting a parameter for a filter

Figure 11-7.  Applying a parameter for a filter

	 8.	 Click OK. The current parameter value (the country that you

selected) will be applied, and the dataset will be filtered using the

current parameter value.

Chapter 11 Parameterizing Queries

331

Note T o remove a parameter from a filter, simply delete the relevant step in the
Applied Steps list.

�Modifying the Current Value of a Parameter
You could be forgiven for wondering if it is worth setting up a parameter merely to filter

a dataset. However, this whole approach becomes more interesting if you modify the

current parameter value and then refresh the data to apply the new parameter. Here is an

example of this:

	 1.	 In the Query Editor Home ribbon, click the small triangle to

display the menu for the Manage Parameters button.

	 2.	 Select Edit Parameters. The Enter Parameters dialog will appear.

	 3.	 From the popup list of values for the CountriesParameter, select

one of the available values (and not the value that was previously

selected). The dialog should look like the one shown in Figure 11-8.

Figure 11-8.  Modifying the current value of a parameter

	 4.	 Click OK.

	 5.	 In the Query Editor Home ribbon, click Refresh Preview. The data

will be refreshed and the new parameter values applied to the

filters that use these parameters.

Chapter 11 Parameterizing Queries

332

This approach becomes particularly useful if you have many combinations of

filter values to test. In essence, you can apply a series of filters to several columns (or

create complex filters) using several parameters and then test the results of different

combinations of parameters on a dataset using the Enter Parameters dialog. This

technique avoids having to alter multiple filters manually—and repeatedly. As an added

bonus, you can restrict the user (or yourself) to specific lists of parameter choices by

defining the lists of available parameter options. You can see this for the popup lists that

appear when you select the CountriesParameter popup or the ModelsParameter popup.

�Applying a Parameter to a Data Source
In some corporate environments, there are many database servers that are available, and

possibly even more databases. You may find it difficult to remember all of these—and so

may the users that you are preparing reports for using Power Query in Excel.

One solution that can make a corporate environment easier to navigate is to prepare

parameters that contain the lists of available servers and databases. These parameters

can then be used—and updated—to guide users in their choice of SQL Server, Oracle, or

other database data sources.

To see this in action, you will first have to prepare two parameters:

•	 A list of servers

•	 A list of databases

You can then see how to use these parameters to connect to data sources. Of course,

you will have to replace the example server and database names that I use here in step 6

with names from your own environment.

Note  You can only apply parameters if the check box Always allow is checked in
the Query Editor View menu.

	 1.	 Open a new Excel file.

	 2.	 Click Get Data ➤ From Database ➤ From SQL Server Database.

	 3.	 Enter your server and database, and connect to the database.

	 4.	 Select a data table—or tables.

Chapter 11 Parameterizing Queries

333

	 5.	 Click Transform Data to open the Query Editor.

	 6.	 Create a new parameter using the following elements:

	 a.	 Name: Servers

	 b.	 Type: Text

	 c.	 Suggested Values: List of Values

	 d.	 Values in the list: ADAM03 and ADAM03\SQL2017 (or your database

server)

	 e.	 Default Value: ADAM03\SQL2017 (or your database server)

	 f.	 Current Value: ADAM03\SQL2017 (or your database server)

	 7.	 Select the query that you created to connect to the source data.

	 8.	 In the Applied Steps list, click the cog icon to the right of the first

step, named Source.

	 9.	 On the Server line, click the popup for the server and choose

Parameter. Select the Server parameter. The SQL Server database

dialog will look like the one shown in Figure 11-9.

Figure 11-9.  Using a parameter to select the server and database

Chapter 11 Parameterizing Queries

334

	 10.	 Choose the data connectivity mode and any advanced options

that you want to set.

	 11.	 Click OK. The server connection process and dialogs will appear,

and you will then see the Navigator dialog displaying the tables

and views for the current server and database values in the two

parameters.

You could have defined and applied a database parameter as well. However, as the

approach is virtually identical, I will leave you to attempt this unaided.

�Other Uses for Parameters
These examples only cover a few of the cases where parameters can be applied in

Power Query. Indeed, the range of circumstances where a parameter can be applied is

increasing with each release of the product. So look out for all the dialogs that give you

the option of using a parameter.

�Using Parameters in the Data Source Step
One use of parameters that can quickly prove to be a real time-saver is to use parameters

in the Source step of a query. Put simply, you can use a parameter instead of a fixed

element name such as

•	 An Excel file name

•	 A file path

•	 A database or data warehouse server

•	 A database

It can be particularly useful to use parameters to define connections (i.e., server and

database references), as this

•	 Provides a central reference point for connection information

•	 Avoids you having to type connection details for similar queries from

the same server—and minimizes the risk of introducing typos

•	 Makes it easier to switch between development, test, and production

servers

Chapter 11 Parameterizing Queries

335

To illustrate this, and assuming that you have created the parameter “Servers” from

the previous section, try the following:

	 1.	 Create a connection to a SQL Server database (as described in

Chapter 3).

	 2.	 Click the Transform Data button in the Home ribbon.

	 3.	 In the Query Editor, select the query created by the database

connection.

	 4.	 Click the first of the Applied Steps on the right. This step should be

named “Source.”

	 5.	 In the formula bar, replace the code that looks something like this:

= Sql.Database("ADAM03\SQL2017", "PrestigeCars")

	 6.	 With this

= Sql.Database(Servers, "PrestigeCars")

	 7.	 Confirm your modifications by clicking the check box in the

formula bar—or by pressing Enter. You will almost certainly have

to confirm your database credentials.

Note  You need to be aware that hard-coded server and database names must be
contained in double quotes, whereas parameters must not be enclosed in quotes.
Also note that the M language used in the formula bar is case-sensitive. So you
need to enter parameter names exactly as they were created. You will learn more
about the M language in Chapter 12.

�Applying a Parameter to a SQL Query
If you are using a relational database, such as Oracle or SQL Server, as a data source (and

if you are reasonably up to speed with the flavor of SQL that the source database uses),

you can query a database using SQL and then apply Power Query parameters to the

source query.

Chapter 11 Parameterizing Queries

336

Let’s see this in action:

	 1.	 Open a new Excel file, open the Query Editor, and create the

parameter named CountriesParameter that you saw a few pages ago.

	 2.	 Click Close & Load to close the Query Editor.

	 3.	 In the Excel Report screen, click SQL Server Database.

	 4.	 Enter the server and database that you are using. (If you are using

the examples from the Apress website, then it will be your server

and the database CarSalesData.)

	 5.	 Click Advanced options and enter the following SQL statement:

SELECT *

FROM CarSalesData.Data.CarSalesData

WHERE CountryName = 'Germany'

	 6.	 Click OK and confirm any dialogs about data access and

permissions.

	 7.	 Click Edit to connect to the data and open the Query Editor.

	 8.	 There should only be one Applied Step for the data connection.

Expand the formula bar and tweak the formula so that it looks like this:

= Sql.Database("ADAM03\SQLSERVER2016", "CarSalesData",

[Query="SELECT * FROM CarSalesData.Data.CarSalesData WHERE

CountryName = '"& CountriesParameter &"'"])

	 9.	 Click the tick icon in the formula bar to confirm your changes.

The data will change to display the data for France (the current

parameter value) rather than Germany (the initial value in the SQL).

You can now alter the parameter value and refresh the data. This will place the

current parameter inside the SQL WHERE clause and only get the data for the current

parameter.

In case this seems a little succinct, let’s look at the code used by Power Query before

you made the change in step 8. The M language read:

= Sql.Database("ADAM03\SQLSERVER2016", "CarSAlesDAta", [Query="SELECT *

FROM CarSalesData.Data.CarSalesData WHERE CountryName = 'France'"])

Chapter 11 Parameterizing Queries

337

The change was to replace

France
with

“& CountriesParameter &”
What you did was to replace the hard-coded criterion “France” with the parameter

reference. Indeed, much as you would in Excel, you added double quotes and

ampersands to the formula to allow the code to include an extraneous text element.

This was an extremely simple example, but I hope that it opens the door to some

fairly advanced use of parameters in database connections.

Note U pdating data once a parameter has changed might require accepting data
changes and new permissions.

�Query Icons
As you could see previously in Figure 11-9, there are three query icons. These are

explained in Table 11-1.

Table 11-1.  Query Icons

Icon Query Type Description

Query The icon for a standard query

List The icon for a list

Parameter The icon for a parameter

�Conclusion
In this chapter, you saw how to add parameters to queries and how to interact with

queries in a controlled fashion. This lets you make queries—and so the entire ETL

process—more flexible and interactive.

Chapter 11 Parameterizing Queries

339
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0_12

CHAPTER 12

The M Language
Data ingestion and modification are not only interface-driven in Power Query. In fact,

the entire process is underpinned and powered by a highly specific programming

language. Called “M,” this language underlies everything that you have learned to do in

the last 11 chapters.

Most users—most of the time—are unlikely to need to use the M language directly

at all. This is because the Power Query Editor interface that you have learned so much

about thus far in this book is both comprehensive and extremely intuitive. Yet there may

be times when you will need to

•	 Add some additional functionality that is not immediately accessible

through the graphical interface

•	 Add programming logic such as generating sequences of dates or

numbers

•	 Create or manipulate your own lists, records, or tables

programmatically

•	 Create your own built-in functions to extend or enhance those that

are built in to the M language

•	 Use the Advanced Editor to modify code

•	 Add comments to your data ingestion processes

Before introducing you to these concepts, I need to add a few caveats:

•	 The “M” language that underpins Power Query queries is not for the

faint of heart. The language can seem abstruse at first sight.

•	 The documentation is extremely technical and not wildly

comprehensible for the uninitiated.

https://doi.org/10.1007/978-1-4842-6018-0_12#DOI

340

•	 The learning curve can be steep, even for experienced programmers.

•	 The “M” language is very different from VBA, which many Excel

power users know well.

•	 Tweaking a step manually can cause havoc to a carefully wrought

data load and transform process.

Moreover, the “M” language is so vast that it requires an entire book. Consequently,

I have deliberately chosen to provide only the most superficial (and I hope, helpful)

of introductions here. For greater detail, I suggest that you consult the Microsoft

documentation. This is currently available at the following URLs:

•	 https://msdn.microsoft.com/en-us/library/mt779182.aspx

•	 https://msdn.microsoft.com/en-us/library/mt807488.aspx

In this chapter, I am not going to presume that the reader has any in-depth

programming knowledge. I will provide a few comparisons with standard programming

concepts to assist any readers that have programmed in VBA, C#, or Java. However, rest

assured, the intention is to open up new horizons for passionate Power Query users

rather than spiral off into a complex technical universe.

All of this is probably best understood by building on your existing knowledge and

explaining how (simply by using the Power Query graphical interface) you have been

writing M code already. Then you can extend this knowledge by learning how to tweak

existing code, and finally you will see how to write M code unaided.

�What Is the M Language?
I should, nonetheless, begin with a few technical stakes in the ground to explain what the

Power Query Formula Language (or M as everyone calls the language now) is and what it

can—and cannot—do.

M is a functional language. It is certainly not designed to perform general-purpose

programming. Indeed, battle-hardened programmers will search in vain for coding

structures and techniques that are core to other languages.

Chapter 12 The M Language

https://msdn.microsoft.com/en-us/library/mt779182.aspx
https://msdn.microsoft.com/en-us/library/mt807488.aspx

341

At the risk of offending programming purists, I prefer to introduce M to beginners as

being a functional language in three ways:

•	 It exists to perform a simple function which is to load and

transform data.

•	 It is built on a compendium of over 700 built-in functions, each of

which is designed to carry out a specific piece of data load and/or

transformation logic.

•	 It exists as a series of functions, each of which computes a set of input

values to a single output value.

To complete the whirlwind introduction, you also need to know that

•	 M is case-sensitive, so you need to be very careful when typing in

function keywords and variable names.

•	 M is strongly typed—which means that you must respect the core

types of data elements used and convert them to the appropriate type

where necessary. M will not do this for you automatically.

•	 M is built on a set of keywords, operators, and punctuators.

I don’t want to get too technical at this juncture. Nonetheless, I hope that a high-level

overview will prepare you for some of the approaches that you will learn later in this

chapter.

�M and the Power Query Editor
The good news about M is that you can already write it. By this I mean that every

example that you followed in the previous 11 chapters wrote one or more lines of M code

for you. Indeed, each step in a data load and transformation process that you generated

when using the Power Query Editor created M code for you—automatically.

This means several (very positive) things:

•	 You do not necessarily have to begin writing M code from a blank

slate. Often you can use the Query Editor interface to carry out most

of the work—and then tweak the automatically generated code to add

the final custom elements that you require.

Chapter 12 The M Language

342

•	 You do not have to learn over 700 functions to deliver M code as the

Query Editor can find and write many of the appropriate instructions

for you.

•	 The Query Editor interface is tightly linked to the way that M code

is written. So understanding how to use the interface helps you in

understanding what M code is and how it works. Indeed, there is

a one-to-one relationship between many Power Query interface

elements and the underlying M function.

�Modifying the Code for a Step
If you feel that you want to delve into the inner reaches of Power Query, you can modify

steps in a query by editing the code that is created automatically every time that you add

or modify a query step.

To get a quick idea of what can be done:

	 1.	 Open a new Excel file.

	 2.	 In the Data ribbon, select Get Data ➤ From File ➤ From

Worksheet.

	 3.	 Select the Excel file C:\DataMashupWithExcelSamples\

BrilliantBritishCars.xlsx.

	 4.	 Select the source table named BaseData.

	 5.	 Click Transform Data to open the Query Editor.

	 6.	 Select the column IsDealer and remove it.

	 7.	 Click the Remove Columns step in the BaseData query. You will

see the “M” code in the formula bar. It will look like that shown in

Figure 12-1.

Figure 12-1.  “M” code for an applied step

Chapter 12 The M Language

343

	 8.	 In the formula bar, edit the M code to replace IsDealer with

ReportingYear.

	 9.	 Press Enter or click the tick icon (check mark) in the formula bar

to confirm your changes.

The step and subsequent data will be updated to reflect your changes.

The modification that you carried out in step 8 effectively means that you are adding

back the IsDealer column and removing the ReportingYear column instead. You could

have done this using the interface (by clicking the gear cog icon in the Applied Steps list

for this step), but the whole point is to understand that both options are available and

that the Power Query interface is only generating and modifying M code. So you can

modify this code directly, if you prefer. Indeed, modifying M code is often faster than

making a series of interface-based maneuvers.

If you are an Excel power user (as many Power Query aficionados are), then you can

be forgiven for thinking that this is similar to Excel Macro development. Indeed, it is in

some respects:

•	 The core code can be recorded (VBA for Excel, M for Power Query).

•	 The resulting code can then be modified.

This is, of course, an overtly simplistic comparison. The two approaches may be

similar, but the two languages are vastly different. Yet if this helps as a metaphor to

encourage you to move to M development, then so be it.

There are, inevitably, a series of caveats when modifying the M code for a query step

in the formula bar. These include (but are far from restricted to)

•	 Any error will not only cause the step to fail, it will cause the whole

data load and transformation process to fail from the current step

onward.

•	 You need to remember that M is case-sensitive—and even the

slightest error of capitalization can cause the entire process to fail.

•	 The use of quotes to define literal elements (such as column names)

must be respected.

•	 M makes lavish use of both parentheses and braces. It can take some

practice and understanding of the underlying logic to appreciate

their use fully in various contexts.

Chapter 12 The M Language

344

Fortunately, M will provide fairly clear error messages if (or when) errors creep in. If

you enter an erroneous field name, for instance, you could see a message like the one in

Figure 12-2.

I do not want you to feel that modifying M code is difficult or dangerous, however.

So, to extend the example given earlier, this is what the M code would look like if you

extended it to remove two columns, and not just one:

= Table.RemoveColumns(#"Changed Type",{"ReportingYear", "IsDealer"})

Note  More generally, it is often best to look at the code for existing steps—or
create “dummy” code using a sample dataset in parallel—to get an idea of what
the M code for a particular function looks like. This will then indicate how best to
modify the code.

�M Expressions
To give you a clearer understanding of what each M “step” contains, Figure 12-3 shows

the core structure of a step. However, only the Power Query interface calls this a step.

M actually calls this an expression. So that is the term I will use from now on.

Figure 12-2.  An “M” error message

Chapter 12 The M Language

345

There are several fundamental points that you need to be aware of here:

•	 Each M expression is made up of functions. These can be any of the

built-in functions (such as the Table.RemoveColumns) used here—or

functions that you have defined (which is explained a little later in

this chapter). They can also be calculations or simple logic.

•	 As you learned in the course of this book so far, data mashup is

essentially a series of individual actions (or steps as the Power Query

interface calls them). These actions are linked in a “chain” where

each expression is built on—and refers to—a preceding expression.

In Figure 12-3, this specific expression refers to the output of the

#“Changed Type” expression which preceded it.

•	 M expressions can become extremely complex and include multiple

functions—rather like complex Excel formulas. As functions can be

nested, this can lead to quite complex expressions.

�Writing M by Adding Custom Columns
Another way to write certain types of M code is to add custom columns. Although these

are known as custom columns in Power Query, they are also known more generically as

derived columns or calculated columns. Although they can do many things, their essential

role is to carry out any or all of the following (and this list is far from exhaustive):

•	 Concatenate (or join, if you prefer) existing columns

•	 Add calculations to the data table

Figure 12-3.  An M expression

Chapter 12 The M Language

346

•	 Extract a specific part of a column

•	 Add flags to the table based on existing data

The best way to understand these columns is probably to see them in action. You can

then extend these principles in your own processes. This can, however, be an excellent

starting point to learn basic M coding—albeit limited to a narrowly focused area of data

wrangling in M.

Initially, let’s perform a column join and create a column named Vehicle, which

concatenates the Make and Model columns with a space in between.

	 1.	 Open a blank Excel file.

	 2.	 Connect to the C:\DataMashupWithExcelSamples\

BrilliantBritishCars.xlsx data source.

	 3.	 Click Transform to open the Power Query Editor.

	 4.	 In the Add Column ribbon, click Custom Column. The Add

Custom Column dialog is displayed.

	 5.	 Click the Make column in the column list on the right, then click

the Insert button; =[Make] will appear in the Custom column

formula box at the left of the dialog.

	 6.	 Enter & “ ” & in the Custom column formula box after =[Make].

Note the space between the pair of double quotes.

	 7.	 Click the Model column in the column list on the right, and then

click the Insert button.

	 8.	 Click inside the New column name box and enter a name for the

column. I call it CarType. The dialog will look like Figure 12-4.

Chapter 12 The M Language

347

	 9.	 Click OK. The new column is added to the right of the data table;

it contains the results of the formula. Inserted Column appears

in the Applied Steps list. The formula bar contains the following

formula:

= Table.AddColumn(#"Changed Type", "CarType", each [Make] & " " & [Model])

You can always double-click a column to insert it into the Custom column formula

box if you prefer. To remove a column, simply delete the column name (including the

square brackets) in the Custom column formula box.

Tip  You must always enclose a column name in square brackets.

You can see that this line of M code follows the principles that you have already seen.

It uses an M formula (Table.AddColumn) that refers to a previous expression (#"Changed

Type") and then applies the code that carries out the expression requirements—in this

case adding a new column that contains basic M code.

Figure 12-4.  The Custom Column dialog

Chapter 12 The M Language

348

Note T he each keyword is an M convention to indicate that every record in the
column will have the formula applied.

�The Advanced Editor
The formula bar is only the initial step to coding in M. In practice you will nearly always

write M code in the Power Query Advanced Editor. There are several fundamental

reasons for this:

•	 The Advanced Editor shows all the expressions that make up an M

query.

•	 It makes understanding the sequencing of events (or steps or

expressions if you prefer) much easier.

•	 It has a syntax checker that helps isolate and identify syntax errors.

Note T he Advanced Editor, unfortunately, does not yet have IntelliSense
built-in. This means that you cannot see M function popup as you type.

�Expressions in the Advanced Editor
The M expressions that you can see individually in the formula bar do not exist in a

vacuum. Quite the contrary, they are always part of a coherent sequence of data load,

cleansing, and transformation events. This is probably best appreciated if you now take

a look at the whole block of M code that was created when you loaded a table from an

Excel file previously.

To see the M code, you need to open the Advanced Editor.

	 1.	 In the Home ribbon, click the Advanced Editor button. The

Advanced Editor window will open, as shown in Figure 12-5. You

can also see the Applied Steps list from the Power Query Editor to

help you understand how each step is, in fact, an M expression.

Chapter 12 The M Language

349

This dialog contains the entire structure of the connection and transformation

process that you created. It contains the following core elements:

•	 A sequence of expressions (which are steps)

•	 A let expression that acts as an outer container for a sequence of data

transformation expressions

•	 An in expression that returns the output of the entire query

If you look at Figure 12-5, you can see several important things about the sequence of

expressions that are inside the Let…In block:

•	 Each expression is named—and you can see its name in the Applied

Steps list.

•	 Each expression refers to another expression (nearly always the

previous expression) except for the first one.

•	 All but the final expression are terminated by a comma.

•	 An expression can run over several lines of code. It is the final comma

that ends the expression in all but the last expression.

•	 The final expression becomes the output of the query.

Figure 12-5.  Syntax checking in the Advanced Editor

Chapter 12 The M Language

350

Although this is a fairly simple M query, it contains all the essential elements

that show how M works. Nearly every M query that you build will reflect these core

principles:

•	 Have a Let…In block

•	 Contain one or more expressions that contain functions

�The Let Statement
The let statement is a core element of the M language. It exists to allow a set of values

to be evaluated individually where each is assigned to a variable name. These variables

form a structured sequence of evaluation processes that are then used in the output

expression that follows the in statement. You can consider it to be a “unit of processing”

in many respects. Let statements can be nested to add greater flexibility.

In most let statements, the sequence of variables will be ordered from top to bottom

(as you can see in Figures 12-5 and 12-6) where each named expression refers to, and

builds on, the previous one. This is the way that the Query Editor presents named

expressions as steps and is generally the easiest way to write M scripts that are easy to

understand. However, it is not, technically, necessary to order the expressions like this as

the expressions can be in any order.

�Modifying M in the Advanced Editor
As with all things Power Query related, the Advanced Editor is best appreciated through

an example. You saw in Chapter 3 how to create and modify connections to data sources.

You can also modify connections directly in the “M” language. This assumes that you

know and understand the database that you are working with.

	 1.	 Add a new query that connects to a SQL Server database. I am

using a SQL instance and database on my PC.

	 2.	 Select this query in the Queries list on the left.

	 3.	 In the Home ribbon, click the Advanced Editor button. The

Advanced Editor dialog will appear, as shown in Figure 12-6.

Chapter 12 The M Language

351

	 4.	 Alter any of the following elements:

	 a.	 The server name in the Source line (currently “ADAM03\SQL2017”).

	 b.	 The database name in the second line (currently Name=“PrestigeCars”).

	 c.	 The schema name in the third line (currently Schema=“Data”).

	 d.	 The table name in the third line (currently Item=“Sales”).

	 5.	 Click Done to confirm any changes and close the Advanced Editor.

This approach really is working without a safety net, and I am showing you this more

to raise awareness than to suggest that you must always code M in this fashion. However,

it does open the door to some far-reaching possibilities if you wish to continue learning

all about the “M” language.

Note  You can, of course, click Cancel to ignore any changes that you have made
to the M code in the Advanced Editor. The Query Editor will ask you to confirm that
you really want to discard your modifications.

Figure 12-6.  The Advanced Editor dialog to alter a database connection

Chapter 12 The M Language

352

�Syntax Checking
If you intend to write and modify M code, you are likely to be using the Advanced Editor—a

lot. Consequently, it is certainly worth familiarizing yourself with the help that it can

provide. Specifically, its syntax checking can be extremely useful and is entirely automatic.

Suppose that you have (heaven forbid!) made an error in your code. The Advanced

Editor could look something like the one in Figure 12-7.

As you can see, in this case the Advanced Editor no longer displays a check box

under the code and the reassuring message “No syntax errors have been detected.”

Instead you see an error message. Clicking the Show error link will highlight the source

of the error by displaying it on a blue background.

�Basic M Functions
The M language is vast—far too vast for anything other than a cursory overview in a

single chapter. Nonetheless, to give some structure to the overview, it is worth knowing

that there are a few key categories of M functions that you might find useful when

beginning to use M.

Figure 12-7.  Syntax checking in the Advanced Editor

Chapter 12 The M Language

353

The following list is not exhaustive by any means, but can, hopefully, serve as a

starting point for your journey into M functions. The elementary categories are

•	 Text functions

•	 Date functions

•	 Time functions

•	 DateTime functions

•	 Logical functions

•	 Number functions

I am focusing on these categories as they are probably the most easily

comprehensible in both their application and their use. Once you have seen some of

these functions, we can move on to other functions from the range of those available.

Most of the more elementary M functions can be applied in ways that will probably

remind you of their Excel counterparts. For instance, if you want to extend the formula

that you used to concatenate the Make and Model columns so that you are only

extracting the leftmost three characters from the Make, you can use code like this:

= Table.AddColumn(#"Changed Type", "CarType", each Text.Start([Make], 3) &

" " & [Model])

The result is shown in Figure 12-8.

Figure 12-8.  Applying a first text function

Chapter 12 The M Language

354

As you can see, wrapping the Make column inside this particular text function has

added an extra layer of data transformation to the expression.

�Text Functions
Rather than take you step by step through every possible example of text functions, I prefer

to show you some of the more useful text functions (at least, in my experience). These code

snippets are given in Table 12-1, where you will doubtless recognize many of the functions

that you have been accessing up until now through the Power Query user interface. Indeed,

you may have used equivalent Excel functions when writing formulas in spreadsheets.

Table 12-1.  Text Function Examples

Output Code Snippet Description

Left Text.Start([Make],3) Returns the first three characters from the

Make column

Right Text.End([Make],3) Returns the last three characters from the

Make column

Up to a specific

character

Text.Start([Make],Text.

PositionOf([Make]," "))

Returns the leftmost characters up to the first

space

Up to a delimiter Text.BeforeDelimiter([In

voiceNumber], "-" ,"2")

Returns the text before the third hyphen

Text length Text.Length([Make]) Finds the length of a text

Extract a

substring

Text.Range([Make], 2, 3) Extracts a specific number of characters from

a text—starting at a specified position

Remove a

subtext

Text.RemoveRange([Make],

2, 3)

Removes a specific number of characters

from a text—starting at a specified position

Replace a text Text.Replace([Make], "o",

"a")

Replaces all the o characters with an a in the

text or column

Trim spaces Text.Trim([Make]) Removes leading and trailing spaces in the

text or column

Convert to

uppercase

Text.Upper([Make]) Converts the text or column to uppercase

(continued)

Chapter 12 The M Language

355

Note  You have probably noticed if you looked closely at these functions that any
numeric parameters are zero based. So, to define the third hyphen when splitting
text in a column, you would use 2, not 3.

There are, as you might expect, many more text functions available in M. However,

the aim is not to drown the reader in technicalities, but to make you aware of both the

way that M works and what is possible.

You may well wonder why you carry out operations like this in Power Query when

you can do virtually the same thing in Excel formulas. Well, it is true that there is some

overlap; so you have the choice of which to use. However, remember that there is no

need to copy formulas down over a column in M, as the formula will apply, by definition,

to an entire column.

Overall, you can perform certain operations at multiple stages in the data

preparation and analysis process. It all depends on how you are using the data and with

what tool you are carrying out the analyses.

Table 12-1 is only a subset of the available text functions in M. If you want to see the

complete list, it is on the Microsoft website at https://docs.microsoft.com/en-us/

powerquery-m/text-functions.

�Number Functions
To extend your knowledge, Table 12-2 shows a few of the available number functions in

M. Here I have concentrated on showing you some of the numeric type conversions as

well as the core calculation functions.

Output Code Snippet Description

Convert to

lowercase

Text.Lower([Make]) Converts the text or column to lowercase

Add initial

capitals

Text.Proper([Make]) Adds initial capitals to each word of the text

or column

Table 12-1.  (continued)

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/text-functions
https://docs.microsoft.com/en-us/powerquery-m/text-functions

356

Table 12-2.  Number Function Examples

Output Code Snippet Description

Returns an 8-bit integer Int8.From("25") Converts the text or number to an 8-bit

integer

Returns a 16-bit integer Int16.From("2500") Converts the text or number to a 16-bit

integer

Returns a 32-bit integer Int32.From("250000") Converts the text or number to a 32-bit

integer

Returns a 64-bit integer Int64.

From("2500000000")

Converts the text or number to a 64-bit

integer

Returns a decimal

number

Decimal.From("2500") Converts the text or number to a

decimal

Returns a Double number

value from the given

value

Double.From("2500") Converts the text or number to a

floating-point number

Takes a text as the

source and converts to a

numeric value

Number.FromText("2500") Converts the text to a number

Rounds a number Number.Round(5000, 0) Rounds the number up or down to the

number of decimals (or tens, hundreds,

etc. for negative parameters)

Rounds a number up Number.RoundUp

(5020, -2)

Rounds the number up to the number

of decimals (or tens, hundreds, etc. for

negative parameters)

Rounds a number down Number.

RoundDown(100.01235, 2)

Rounds the number down to the

number of decimals (or tens, hundreds,

etc. for negative parameters)

Removes the sign Number.Abs(-50) Returns the absolute value of the

number

(continued)

Chapter 12 The M Language

357

Note  If you are an Excel user, you can probably see a distinct similarity with how
you build formulas in Excel (in pivot tables in Power Pivot) except that here (as in
Power Pivot) you use column names rather than cell references.

Table 12-2 is only a minor subset of the vast range of number functions that are

available in M. If you want to see the complete list, it is on the Microsoft website at

https://docs.microsoft.com/en-us/powerquery-m/number-functions.

�Date Functions
M has many date functions. Table 12-3 contains a potentially useful sample of some of

the available functions.

Table 12-3 is only a subset of the available date functions in M. If you want to see the

complete list, it is on the Microsoft website at https://docs.microsoft.com/en-us/

powerquery-m/date-functions.

Table 12-2.  (continued)

Output Code Snippet Description

Raises to a power Number.Power(10, 4) Returns the value of the first parameter

to the power of the second

Modulo Number.Mod(5, 2) Returns the remainder resulting from

the integer division of number by

divisor

Indicates the sign of a

number

Number.Sign(-1) Returns 1 if the number is a positive

number, -1 if it is a negative number,

and 0 if it is zero

Gives the square root Number.Sqrt(4) Returns the square root of the number

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/number-functions
https://docs.microsoft.com/en-us/powerquery-m/date-functions
https://docs.microsoft.com/en-us/powerquery-m/date-functions

358

Table 12-3.  Date Function Examples

Output Code Snippet Description

Day Date.Day(Date.

FromText("25/07/2020"))

Returns the number of the day of the

week from a date

Month Date.Month(Date.

FromText("25/07/2020"))

Returns the number of the month from

a date

Year Date.Year(Date.

FromText("25/07/2020"))

Returns the week from a date

Day of week Date.DayOfWeek(Date.

FromText("25/07/2020"))

Returns the day of the week from a

date

Name of

weekday

Date.DayOfWeekName(Date.

FromText("25/07/2020"))

Returns the weekday name from a

date

First day of

month

Date.StartOfMonth(Date.

FromText("25/07/2020"))

Returns the first day of the month from

a date

Last day of

month

Date.EndOfMonth(Date.

FromText("25/07/2020"))

Returns the last day of the month from

a date

First day of

year

Date.StartOfYear(Date.

FromText("25/07/2020"))

Returns the first day of the year from

a date

Last day of

year

Date.EndOfYear(Date.

FromText("25/07/2020"))

Returns the last day of the year from

a date

Day of year Date.DayOfYear(Date.

FromText("25/07/2020"))

Returns the day of the year from a

date

Week of year Date.WeekOfYear(Date.

FromText("25/07/2020"))

Returns the week of the year from a

date

Quarter Date.QuarterOfYear(Date.

FromText("25/07/2020"))

Returns the number of the quarter

from a date

First day of

quarter

Date.StartOfQuarter(Date.

FromText("25/07/2020"))

Returns the first day of the quarter

from a date

Last day of

quarter

Date.EndOfQuarter(Date.

FromText("25/07/2020"))

Returns the last day of the quarter

from a date

Chapter 12 The M Language

359

�Time Functions
M also has many time functions. Table 12-4 contains a potentially useful sample of the

available functions.

Table 12-4.  Time Function Examples

Output Code Snippet Description

Hour Time.Hour(#time(14, 30, 00)) Returns the hour from a time

Minute Time.Minute(#time(14, 30, 00)) Returns the minute from a time

Second Time.Second(#time(14, 30, 00)) Returns the second from a time

Time from

fraction

Time.From(0.5) Returns the time from a fraction of the day

Table 12-4 is only a subset of the available time functions in M. If you want to see the

complete list, it is on the Microsoft website at https://docs.microsoft.com/en-us/

powerquery-m/time-functions.

Equally, as they are so similar to the date and time functions, I have not shown here

the datetime functions and the datetimezone functions. These are also available on the

Microsoft website.

�Duration Functions
M can also extract durations—in days, hours, minutes, and seconds. Table 12-5 shows

some of the basic duration functions.

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/time-functions
https://docs.microsoft.com/en-us/powerquery-m/time-functions

360

Table 12-5 is nearly all the available duration functions in M. If you want to see the

remaining few functions, they are on the Microsoft website at https://docs.microsoft.

com/en-us/powerquery-m/duration-functions.

�M Concepts
The time has now come to “remove the stabilizers” from the bicycle and learn how to cycle

unaided. This means, firstly, becoming acquainted with several M structural concepts.

This means moving on from the “starter” functions that you can use to modify the

contents of the data to creating and modifying data structures themselves. M is essentially

focused on loading and presenting tabular data structures, so tables of data are an

essential data structure. However, there are other data structures that it can manipulate—

and that you have seen in passing in previous chapters. In this chapter, then, we will look

at the three core data structures. Collectively, these are classified as structured values—as

opposed to the primitive values such as text, number, or date and time. Some of these are

•	 Lists

•	 Records

•	 Tables

However, before delving into these structured data elements, you need to

understand two fundamental aspects of the M language. These are

•	 Data types

•	 M values (also referred to as variables or identifiers)

So, without further ado, let’s start your journey into M.

Table 12-5.  Duration Function Examples

Output Code Snippet Description

Days Duration.Days(#duration(10, 15, 55, 20)) Duration in days

Hours Duration.Hours(#duration(10, 15, 55, 20)) Duration in hours

Minutes Duration.Minutes(#duration(10, 15, 55, 20)) Duration in minutes

Seconds Duration.Seconds(#duration(10, 15, 55, 20)) Duration in seconds

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/duration-functions
https://docs.microsoft.com/en-us/powerquery-m/duration-functions

361

�M Data Types
If you are creating your own lists, records, and tables, then it will help to know the basics

about data types in M.

When beginning to use M, you need to remember that primitive data values must

always be one of the following types:

•	 Number

•	 Text

•	 Date

•	 Time

•	 DateTime

•	 DateTimeZone

•	 Duration

•	 Logical (Boolean if you prefer)

•	 Binary

•	 Null

There are other types such as function, any, or anynonnull, but we will not be

covering them in this chapter.

All data types expect to be entered in a specific way. Indeed, you must enter data in

the way shown in Table 12-6 to avoid errors in your M code.

Table 12-6.  Data Type Entry

Data Type Code Snippet Comments

Number 100

0.12345

2.4125E8

Do not use formatting such as thousand

separators or monetary symbols

Text "Calidra Power Query

Training"

Always enclose in double quotes. Use two

double quotes to enter the actual quotes text

(continued)

Chapter 12 The M Language

362

Data Type Code Snippet Comments

Date #date(2020,12,25) Dates must be year, month, and day in the

#date() function

Time #time(15,55,20) Times must be hour, minute, and second in

the #time() function

DateTime #datetime(2020,12,25,

15,55,20)

Datetimes must be year, month, day, hour,

minute, and second in the #datetime()

function

DateTimeZone #datetimezone(2020,12,25,

15,55,20,-5,-30)

Datetimezones must be year, month, day,

hour, minute, second, day offset, and hour

offset in the #datetimezone() function

Duration #duration(0,1,0,0) Days, hours, minutes, and seconds comma-

separated inside the #duration() function

Logical true True or false in lowercase

Table 12-6.  (continued)

�M Values
Before diving deeper into actual coding, you really need to know a few fundamentals

concerning M values:

•	 Values are the output of expressions.

•	 Values are also variables.

•	 The names of values are case-sensitive.

•	 If the value name contains spaces or restricted characters, they must

be wrapped in #”” (pound sign followed by double quotes).

This fourth bullet point clearly begs the question “what is a restricted character?”

The simple answer—that avoids memorizing lists of glyphs—is “anything not

alphanumeric.”

Chapter 12 The M Language

363

Note T he Power Query Editor interface makes the steps (which are the values
returned by an expression) more readable by adding spaces wherever possible.
Consequently, these values always appear in the M code as #”Step Name”.

�Defining Your Own Variables in M
As the values returned by any expression are also variables, it follows that defining your

own variables in M is breathtakingly simple. All you have to do is to enter a variable

name (with the pound sign and in quotes if it contains spaces or restricted characters),

an equals sign, and the variable definition.

As a really simple example, take a look at Figure 12-9. This M script defines the three

parameters required for the List.Numbers() function that you will see in Table 12-7 and

then uses the variables inside the function.

Figure 12-9.  User variables in M

Chapter 12 The M Language

364

There are only a few things to remember when defining your own variables:

•	 They respect the same naming convention as output values in M.

•	 A variable can be referenced inside the subexpression where it is

defined and any expressions that contain the subexpression.

•	 A variable can be a simple value or a calculation that returns a value.

�Writing M Queries
Before actually writing M, you need to know how and where to write your code. Suppose

that you need an environment to practice the examples in the remainder of this chapter:

	 1.	 Open a new, blank Excel file.

	 2.	 In the Data ribbon, click Get Data ➤ From Other Sources ➤ Blank

Query. The Power Query Editor will open.

	 3.	 Click Advanced Editor. An Advanced Editor dialog will open

containing only an outer let expression, as shown in Figure 12-10.

Figure 12-10.  Preparing the Advanced Editor to write M code

Chapter 12 The M Language

365

Note T echnically, a let clause is not required in M. You can simply enter an
expression. However, I prefer to write M “by the book”—at least to begin with.

�Lists
You met M lists in Chapter 11 when creating popup lists for query-based parameters

(showing, once again, that everything in the Query Editor is based on M). Lists are

nothing more than a series of values.

Lists have specific uses in M and can be used directly in a data model. However, they

are more generally used as intermediate steps in more complex data transformation

processes. If you have a programming background, you might find it helpful to consider

lists as being something akin to arrays.

�Creating Lists Manually
A list is simply a comma-separated set of values enclosed in braces—such as

{1,2,3}

Once integrated into the structure of an M query, it could look like the example

shown in Figure 12-11.

Chapter 12 The M Language

366

Once created—either as an intermediate step in a query or as the final output of the

query—the list can be used by anything that requires a list as its input. Indeed, if you click

the Done button for the example shown earlier, the Power Query Editor will display this

piece of M code as a functioning list—exactly like the one that you created in Chapter 11.

So you can now create custom lists for parameters (for instance) quickly and easily.

There is some technical information that you need to know about lists:

•	 Lists are unlimited in size.

•	 Lists can contain data of the same type (i.e., all elements are numeric

values, dates, or texts, for instance)—or the data can be of different types.

•	 Lists can be empty—that is, composed of a pair of empty braces.

•	 Lists can be entered horizontally or vertically. That is, the list shown

earlier could have been typed in as

Source = {

 1,

 2,

 3

 }

Generating lists is really easy; knowing when to use lists is the hard part.

Figure 12-11.  A list in the Advanced Editor

Chapter 12 The M Language

367

�Generating Sequences Using Lists
Lists have many uses in M, but there is one area where they shine, and that is generating

sequences of numbers, dates, or texts. Rather than laboriously explain each approach

individually, I have collated a set of examples of M code snippets for list generation in

Table 12-7.

�Accessing Values from a List
If you move to more advanced M coding, you may well want to refer to a value from a list

in your M script. At its simplest, this is done using positional references. Here is a short

piece of M code that does just this:

let

 MyList = {"George","Bill","George W.", "Barack", "Donald"},

 source = MyList{3}

in

 source

Table 12-7.  List Generation

Code Snippet Description

{1..100} An uninterrupted sequence of numbers from 1 to 100, inclusive

{1..100, 201..400} An uninterrupted sequence of numbers from 1 to 100, then

from 201 to 400

List.Numbers(0, 100, 5) Starting at zero increments by 5 until 100 is reached

{"A".."Z"} The uppercase letters A through Z

List.Dates(#date(2020, 1,

1), 366, #duration(1, 0,

0, 0))

Each individual day for the year 2020—starting on 1st January

2020, 366 days (expressed as a duration in days) are added

List.Times(#time(1, 0,

0), 24, #duration(0, 1,

0, 0))

Each hour in the day starting with 1 AM

Chapter 12 The M Language

368

The output of this code snippet is the fourth element in the list—making the point

that lists in M are zero based. That is, the first element in a list is the element 0.

�List Functions
There are many dozens of list functions available in M. Far too many to go through in

detail here. So, to give you an idea of some of the possible ways that you can manipulate

lists, take a look at Table 12-8. All of them use the very simple list of that you can see earlier.

Table 12-8 is only a small subset of the available list functions in M. If you want to see

the full range of functions, it is on the Microsoft website at https://docs.microsoft.

com/en-us/powerquery-m/list-functions.

�Records
If lists can be considered as columns of data that you can use in your M code, records are

rows of data. You might well find yourself needing to define records when creating more

complex data transformation routines in M.

Table 12-8.  List Functions

Output Code Snippet Description

First value List.First(MyList) Returns the first element in a list

Last value List.Last(MyList) Returns the last element in a list

Sort list values List.Sort(MyList) Sorts the values in a list

Extract range List.Range(MyList, 4) Extracts a range of values from a list

Return value(s) List.Select(MyList ,

each _ ="Adam")

Returns the elements from a list that

match a criterion

Generate a list List.Generate() Creates a list of sequential values

Aggregate values List.Sum(MyList) Aggregate the numeric values in a list

Replace values List.ReplaceMatchingItems

(MyList, {"Joe", "Fred"})

Replaces a range of values in a list

Convert to list Table.Column(MyList) Returns a column from a table as a list

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/list-functions
https://docs.microsoft.com/en-us/powerquery-m/list-functions

369

At its simplest, here is a sample record created in M:

let

 Source = [Surname = "Aspin", FirstName = "Adam"]

in

 Source

If you need to access the data in one element of a record, you append the record

variable name with the field name in square brackets, like this:

let

 Source = [Surname = "Aspin", FirstName = "Adam"],

 Output = Source[Surname]

in

 Output

There are a few record functions that you may find useful. These are outlined in

Table 12-9.

Table 12-9.  Record Functions

Output Code Snippet Description

Add field Record.AddField() Adds a field to a record

Remove field Record.RemoveFields() Removes a field from a record

Rename field Record.RenameFields() Renames a field in a record

Output field Record.Field() Returns the value of the specified field in the

record

Count Record.FieldCount() Returns the number of fields in a record

Table 12-9 is only a subset of the available record functions in M. If you want to see

the complete list, it is on the Microsoft website at https://docs.microsoft.com/en-us/

powerquery-m/record-functions.

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/record-functions
https://docs.microsoft.com/en-us/powerquery-m/record-functions

370

�Tables
The final structured data type that you could well employ in M code is the table type. As

you might expect in a language that exists to load, cleanse, and shape tabular data, the

table data type is fundamental to M.

If you decide to create your own tables manually in M, then you will need to include,

at a minimum, the following structural elements:

•	 The #table() function

•	 A set of column/field headers where each field name is enclosed in

double quotes and the set of field names is wrapped in braces

•	 Individual rows of data, each enclosed in braces and comma-

separated, where the collection of rows is also wrapped in braces

A very simple example of a hand-coded table could look like this:

#table(

 {"Surname", "FirstName"},

 {

 {"Johnson","Vladimir"},

 {"Putin","Emmanuel"},

 {"Macron","Angela"},

 {"Merkel","Boris"}

 }

)

However, the weakness with this approach is that there are no type definitions for

the fields. Consequently, a much more robust approach would be to extend the table like

this:

#table(

 type table

 [

 #"Surname" = text,

 #"FirstName" = text

],

 {

 {"Johnson","Vladimir"},

Chapter 12 The M Language

371

 {"Putin","Emmanuel"},

 {"Macron","Angela"},

 {"Merkel","Boris"}

 }

)

Note T he data type keywords that you specify to define the required data type
were outlined earlier in this chapter.

There are many table functions available in M. I have outlined a few of the more

useful ones in Table 12-10.

Table 12-10.  Table Functions

Output Code Snippet Description

Merge tables Table.Combine() Merges tables of similar or different

structures

Number of

records

Table.RowCount() Returns the number of records in a table

First Table.First() Returns the first record in a table

Last Table.Last() Returns the last record in a table

Find rows Table.FindText() Returns the rows in the table that contain

the required text

Insert rows Table.InsertRows() Inserts rows in a table

Output rows Table.Range() Outputs selected rows

Delete rows Table.DeleteRows() Deletes rows in a table

Select columns Table.SelectColumns() Outputs selected columns

Table 12-10 is, as you can probably imagine, only a tiny subset of the available table

functions in M. If you want to see the complete list, it is on the Microsoft website at

https://docs.microsoft.com/en-us/powerquery-m/table-functions.

Chapter 12 The M Language

https://docs.microsoft.com/en-us/powerquery-m/table-functions

372

�Other Function Areas
As I mentioned previously, M is a vast subject that could fill an entire (and very large)

book. We have taken a rapid overview of some of the core concepts and functions,

but there is much that remains to be learned if you wish to master M. If you are really

interested in learning more, then I suggest that you search the Microsoft documentation

for the elements outlined in Table 12-11 to further your knowledge.

Table 12-11.  Other Function Areas

Function Area Description

Accessing data functions Access data and return table values

Binary functions Access binary data

Combiner functions Used by other library functions that merge values to apply row-by-

row logic

DateTime functions Functions applied to datetime data

DateTimeZone functions Functions applied to datetime data with time zone information

Expression functions M code that was used for expressions

Line functions Converts data to lists of values

Replacer Used by other functions in the library to replace a given value in a

structure

Splitter Splits values into subelements

Type Returns M types

Uri Handles URLs and URIs

Value Handles M values

�Custom Functions in M
M also allows you to write custom functions that can carry out highly specific tasks

repeatedly.

Chapter 12 The M Language

373

As an example of a very simple custom function, try adding the following code

snippet to a new, blank query:

let DiscountAnalysis =

 (Discount as number) =>

 �if Discount < 10 then

"Poor" else "Excellent"

in DiscountAnalysis

When you close the Advanced Editor, you will see that this query has been

recognized as being an M function and appears as such in the list of queries. You can see

this in Figure 12-12 (where I have renamed it to “DiscountAnalysis”).

You can now invoke the function at any time interactively by entering a value as the

discount and clicking the Invoke button. You can also use this function inside other M

functions. Indeed, this is probably why you created a custom function in the first place.

If you want to see a more advanced function, take a look at the following code

snippet, which pads out a date to add leading zeroes to the day and month if these are

required:

let

 FormatDate = (InDate as date) =>

let

 �Source = Text.PadStart(Text.From(Date.Month(InDate)),2,"0")

& "/" & Text.PadStart(Text.From(Date.Day(InDate)),2,"0")

& "/" &Text.From(Date.Year(InDate))

Figure 12-12.  User-defined functions in M

Chapter 12 The M Language

374

in

 Source

in

 FormatDate

�Adding Comments to M Code
Complex M code can be extremely dense. So you will likely need ways of remembering

why you created a process when you return to it weeks or months later.

One simple way to make your own life easier is to add comments to M code. You

can do this both for code that you have written and queries that have been generated

automatically.

There are two ways to add comments.

�Single-Line Comments
To comment a single line (which you can do either at the start of the line or partway

through the line), simply add two forward slashes—like this:

//This is a comment

Everything from the two slashes until the end of the line will be considered to be a

comment and will not be evaluated by M.

�Multiline Comments
Multiline comments can cover several lines—or even part of a line. They cover all the

text that is enclosed in /* … */.

/* This is a comment

Over

Several lines */

Everything inside the /* …*/ will be considered to be a comment and will not be

evaluated by M.

Chapter 12 The M Language

375

�Conclusion
This final chapter completes this book on loading and transforming source data

for analysis in Excel. In this chapter, you learned the basics of the M language that

underpins everything that you learned in this book up until now.

You began by seeing how you can use the Power Query Editor interface to assist you

in writing short snippets of M code. Then you moved on to discovering the fundamental

M concepts such as expressions, variables, and values. Finally, you learned about

data types in M and the more complex data types such as lists and tables that underlie

complex data transformations. This involved learning to use the Advanced Editor to

write and debug your code.

In this chapter and the 11 previous chapters, you have seen essentially a three-stage

process: first, you find the data, then you load it into Power Query, and from there, you

cleanse and modify it. The techniques that you can use are simple but powerful and can

range from changing a data type to merging multiple data tables. Now that your data

is prepared and ready for use, you can add it to the Power Pivot/Excel data model or

directly into an Excel spreadsheet and start using it to deliver real-world analytics.

I hope that you have enjoyed reading this book, and that it will help you to master the

art of finding, transforming, and loading external data into Excel using Power Query and M.

Chapter 12 The M Language

377
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0

�APPENDIX A

Sample Data
If you wish to follow the examples used in this book—and I hope you will—you will need

some sample data to work with. All the files referenced in this book are available for

download and can easily be installed on your local PC. This appendix explains where to

obtain the sample files, how to install them, and what they are used for.

�Downloading the Sample Data
The sample files used in this book are currently available on the Apress site. You can

access them as follows:

	 1.	 In your web browser, navigate to the following URL: www.apress.

com/9781484260173.

	 2.	 Click the button Download Source Code. This will take you to the

GitHub page for the source code for this book.

	 3.	 Click Clone or Download ➤ Download Zip and download the file

DataMashupWithExcelSamples.zip.

You will then need to extract the files and directories from the zip file. How you do

this will depend on which software you are using to handle zipped files. If you are not

using any third-party software, then one way to do this is

	 1.	 Create a directory named C:\DataMashupWithExcelSamples.

	 2.	 In the Windows Explorer navigation pane, click the file

DataMashupWithExcelSamples.zip.

	 3.	 Select all the files and folders that it contains.

	 4.	 Copy them to the folder that you created in step 1.

https://doi.org/10.1007/978-1-4842-6018-0#DOI
http://www.apress.com/TODEDEFINED
http://www.apress.com/TODEDEFINED

379
© Adam Aspin 2020
A. Aspin, Data Mashup with Microsoft Excel Using Power Query and M,
https://doi.org/10.1007/978-1-4842-6018-0

Index

A
Access databases, 49–51, 54
Analysis Services database, see SQL Server

Analysis Services (SSAS) database
Appending data

contents adding (query/
query), 256–259

dialog window, 258
meaning, 256
multiple queries, 259, 260
source data, 257

Application programming interface
(API), 125

B
Blob Storage, 110

account key, 112
data connection, 111
source data steps, 110

C
Comma-separated values (CSV) files

access databases, 49–51
close/load button, 35
contents, 33
data discovery process, 38
dialog window, 34
excel files

import Data, 45
navigator dialog, 44, 46
processing queries dialog, 45
steps, 47
working process, 43

file data connectors, 40
fixed-width text file, 40, 41
loading excel data, 47
loading text/CSV files

data type detection, 39
delimiter, 39
origin file, 38
potential options, 38

table/range, 48
text-based files, 37, 38
text file handling, 36
transform data button, 34, 35
XML file, 41–43

Count rows function, 184

D
Database connections

connect dialog (unable), 88
credential types, 87
ODBC/OLE DB, 88

database source, 55
Dataset shaping

BaseData query, 152
choose columns dialog, 157–159
merge columns

https://doi.org/10.1007/978-1-4842-6018-0#DOI

380

dialog window, 158
move (Go to) column

dialog, 161, 162
output result, 159
separators, 160
working process, 159

move button options, 155
removing columns, 155
renaming columns, 153
reordering columns, 154–156

Data transformation
column contents

adding prefix/suffix, 203
format menu, 202
leading and trailing spaces, 204
nonprinting characters, 204
steps, 201
text operation, 201–203

column headers, 190, 191
context menus, 189, 190
data processes, 187
data type changing

approaches, 194
column/group columns, 192
column type alert, 194
context menu, 197, 198
data types, 193
detecting data, 195
icons, 196, 197
indicators, 195
locale, 197, 198
modification, 192

numeric values (see Numeric
transformations)

restructuring data, 269
search-and-replace operation

advanced replace options, 200, 201

data cleansing operation, 198
dialog window, 199
techniques, 199

techniques, 188
viewing full record, 189

Data transformations, 135
column creation, 229–231
conditional columns, 232–235
duplicate column button, 221, 222
extract function, 219–222
filling down empty cells

blank cells, 216
data table, 217
matrix data table, 216

index column, 234, 235
merging columns, 228, 229
splitting column, 224–230
surrogate key, 234

Data warehouses
refreshing data, 132, 133
SSAS database, 76–83
synapse analytics, 106, 107
tabular databases, 83–86
transformation techniques, 136

Date transformations, 210, 211
Documenting queries, 316, 317
Duplicating queries, 314
Duration transformations, 214–216
Dynamics 365, 102–104

E
Extract, Transform, and Load (ETL)

tool, 136
Excel toolkit

data load process
get data popup menu, 4
import data dialog, 5

Dataset shaping (cont.)

INDEX

381

loading data, 4
navigator dialog, 5, 6
source data table, 6, 7

discover and load data, 2
keywords, 1
Power Query (see Power

Query Editor)
sample files, 377

Extensible Markup Language (XML)
approaches, 294, 295
column information, 284
CSV files, 41–43
expand icon, 286
query editor window, 284
table column, 285

Extract transformations, 219
advanced options, 219
between delimiters, 221
dialog window, 218
technique working process, 218
text before and after delimiter, 220

F
File-based sources, 31

CSV file (see Comma-separated values
(CSV) files)

data source, 31, 32
JSON files, 51

Filtering techniques, 170
advanced options, 177–179
approaches, 170
date/time options, 174, 175
elements, 171, 172
numeric data, 173, 175, 176
ordering filters, 178
text ranges options, 172, 173
value selection, 170

G, H
Generic data sources

access data stores, 115
lowest common denominator

approach, 115
OData feeds, 129–132
ODBC drivers (see Open Database

Connectivity (ODBC))
OLE DB, 125–129
refreshing data, 132, 133

Grouping queries, 312
adding query, 314
creation, 312
dialog window, 312
queries pane, 313
rename, 313

Grouping records
aggregation operations, 181
complex data groupings, 181
dataset, 183
group By dialog, 182
output, 180
roll up records, 179
row options, 179

I
IBM DB2 database, 55

J, K
JavaScript Object Notation (JSON), 281

approaches, 287
column/list conversion, 295
complex files

data elements, 288
expand icon, 290, 291
nested elements, 292

INDEX

382

nodes, 288
opening window, 289
parsing, 293
record tools, 289
source file, 288
structure viewing, 292

converted/table, 282
copying data, 298, 299
data expanded, 287
dataset, 283
initial import, 281
parsing, 281
reusing data sources

elements, 296
pinning data, 297
recent sources button, 296, 297

To Table dialog, 282
JSON files, 51

L
Load data process

data modification, 19, 20
data preview pane, 18
dataset search, 16, 17
display options

data previews, 17
item selection, 17
navigator options, 17

key elements, 13
navigator dialog, 13, 14
refresh, 17
source data table, 15

Load destinations
data model, 28–30
default load option, 25
destination options, 26

Excel worksheet, 28
existing connection, 26–28
limitations, 28
peek window options, 27
popup menu, 25
Power Pivot, 29
VLOOKUP() functions, 29

Loading data, 271
capabilities, 271
complex XML files, 294, 295
display/filtering file attributes, 278, 279
List Tools Transform ribbon, 283, 284
loading and parsing JSON file, 281–283
multiple files, 272–275
paring XML data, 284–286
parsing JSON, 287–295
removing header rows, 280
sources folder

contents, 273
dialog window, 272
Excel files, 277
files dialog, 274
filtering source files, 275–278
identical files, 276
imported data, 274
loading multiple files, 276

steps, 271
structured files, 280

M
Massively parallel processing

(MPP), 106
Merge operation

aggregating data
merged dataset, 246
multiple linked records, 244
options, 246

JavaScript Object Notation (JSON) (cont.)

INDEX

383

popup menu, 245
queries, 247

existing queries
adding linked data, 240
column/expand icon, 242
joined query, 242
output window, 243
popup menu, 241

join queries, 240
join types

column name (prefix), 250
columns do not map, 254
correct and incorrect, 253, 254
datasets, 252, 253
data table, 255–257
description, 248
massive table/duplicate records, 254
multiple columns, 250–252
search columns, 250

merging queries, 248
M language

advanced editor
connection modification, 350, 351
database connection, 351
expressions, 348–350
fundamental reasons, 348
let statements, 350
syntax checking, 349, 352

concepts and functions, 339, 372
data types, 361, 362
date functions, 357
derived/calculated columns, 345–348
durations, 359, 360
elementary categories, 353
functional language, 341
lists

accessing values, 367
advanced editor, 366

creation, 365
functions, 368
generation, 367
positional references, 367
technical information, 366

meaning, 339
multiline comments, 374
number functions, 355–357
Power Query Editor

BaseData query, 342
code modification, 342
data load and transformation

process, 341
error message, 344
Excel Macro development, 343
expression, 345, 346
formula bar, 343
step and subsequent

data, 343
primitive values, 360
queries

advanced editor, 364
lists, 365–368
steps, 364
records, 368, 369
tabular data, 370, 371

single-line comments, 374
structural concepts, 360
text function, 353
text functions, 353–355, 359
URLs, 340
user-defined

functions, 373–375
values

fundamentals, 362
user variables, 363, 364

whirlwind introduction, 341
MySQL database, 55

INDEX

384

N
Numeric transformations

buttons/sequences, 205–207
calculation, 208–210
dates, 210, 211
duration, 213–215
rounding options, 205
time values, 212, 213

O
Object Linking and Embedding, Database

(OLB DB)
advantages, 129
API sources data, 125
connection properties, 127
coworker, 129
data link properties, 126
dialog window, 126
drivers/provider, 128
process, 125
test connection alert, 128
valid string data, 128

OData feeds
advanced options, 132
credentials dialog, 130
dialog window, 130
generic method, 129
navigator, 131

Open Database Connectivity (ODBC), 116
compliant data source, 117
configuration assistant, 119
confirmation dialog, 121
database specification, 121
data source administrator, 117
driver configuration, 122
Excel From dialog, 123

FileMaker Pro, 116
installation process, 118
key elements, 124
localhost option, 120
naming option, 119
security dialog, 123
System DSN tab, 117

Oracle databases
dialog window, 72
installation, 72
meaning, 71–74
Power Query, 74
sample databases, 72
security dialog, 73

Organizing queries, 311

P
Parameterizing queries

current value modification, 331, 332
database data sources, 332–334
data source step, 334, 335
dialog window, 323
filtering records, 329–331
filtering subsequent datasets, 322
meaning, 321
modification, 328
queries list, 324, 328–330
query icons, 337
server and database, 333
SQL query, 335–337
structure modification, 329
subset value creation, 324–326
techniques, 321
two-step process, 322

Pivoting data, 263–265
Platform as a service (PaaS), 104
PostgreSQL database, 55

INDEX

385

Power Query Editor
adding data model, 20
data process, 3
data sources, 20, 21
definition, 2, 3
delete connect(see Load data process)
load destinations (see Load destinations)
MI/BI tool, 7
M language, 341–345
queries/connections pane, 8–11
query properties, 23, 24
restructuring data, 266, 267
source data properties, 22, 23
source data steps, 2
transformation techniques

applied steps list, 144
context menus, 189, 190
discard modifications, 185
key elements, 143, 144
macro recorder, 145
ribbons, 145–152
saving option, 184

uses of, 7, 8
view ribbon options, 238, 239

Q
Queries & Connections pane, 8

data ingestion processes, 8
display/hide, 9
key information, 10
peek window, 10, 11
worksheet, 11

Query management, 301
adding column, 318, 319
discard changes

add step, 308
approaches, 309, 310

dialog window, 305
error records, 310
modification, 307–309
process step sequencing, 309

documentation, 316, 317
duplicate option, 314
grouping, 312–314
organization, 311
queries/connections pane, 319, 320
referencing process, 315, 316
transformation steps

delete/series step, 304
Excel source file, 302
key process, 301
modification, 302
renaming steps, 303

tools, 311

R
Referencing queries, 315, 316
Refreshing data

Excel in-memory model, 133
options, 132
queries/connections pane, 133

Relational databases, 54
connection details, 74
database source, 54
database sources, 74
drivers/providers, 75
generic connectors, 55
missing driver alert, 75
Oracle, 71–74
SQL Server (see SQL

Server databases)
Removing records

approaches, 162
duplicate records, 166, 167

INDEX

386

keeping rows
approach, 163
blank (empty) rows, 166
dialog window, 163
range dialog window, 164
removing rows, 164, 165

Restructuring data
appending data, 256

contents adding (query/query),
256–259

multiple queries, 259, 260
data preparation, 237
data structures

categories, 260
pivoting data, 263–265
transposing rows and

columns, 265
unpivoting tables, 261–263

errors/anomalies
displaying errors, 267
queries/connections pane, 268
remove option, 268
viewing errors, 269

loading data (Query Editor), 266, 267
merge operation (see Merge

operation)
pivoting and unpivoting data, 237
queries, 237
transformation options, 269
transposing data, 237
view ribbon, 238, 239

Ribbons
add column ribbon, 150, 151
fundamentals, 145
home options, 145–147
transform options, 147–149
view ribbon, 152

S
Salesforce

data accessing, 95
loading data

access dialog, 100
Excel spreadsheet, 96
identity dialog, 99
login dialog, 97
navigator, 101
objects dialog, 96
sign-in dialog, 98

report data, 102
SAP HANA in-memory database, 55
Software as a service (SaaS), see Salesforce
Sorting data

context menu, 168
multiple columns, 168
reverse rows button, 168

Splitting column
advanced options, 225, 226
data source column, 222
delimiter, 223, 224
description, 225
number of characters, 226–228
results of, 224

SQL Server Analysis Services (SSAS)
database

attributes and measures, 86
attributes and measures selection, 78
credentials dialog, 78, 85
cubes, 76–83
database server dialog, 81
file and finish dialog, 82
import data dialog, 83
multidimensional database, 77
office data connection, 80
output (Excel worksheet), 79

Removing records (cont.)

Index

387

table dialog selection, 81
tabular data warehouse, 83–86
working process steps, 76

SQL Server databases
database connection

navigator dialog, 63
options, 61
search database, 64
server service, 61–63

data load progress, 59
dialog window, 57
navigator dialog, 58
steps, 56
tables, 60

database data selection, 67, 68
navigator, 65
security, 66
SELECT statement, 66
statements, 66–68
steps, 64, 65
stored procedure, 69–71

web and cloud services
credentials dialog, 105
database connection, 105
Excel spreadsheet, 104
platform as a service, 104
processes, 106

SQL Server on-premises database, 54
Sybase database, 55
Synapse Analytics, 106, 107

T
Teradata database, 55
Time transformations, 212, 213
Transformation techniques

categories, 135
count rows function, 184

dataset shaping (see Dataset shaping)
extending queries

context menu, 139, 140
corporate data sources, 136
data before loading, 141
editing data, 137–140
initial data load, 138
queries, 137

filtering data (see Filtering techniques)
grouping records, 179–184
pivoting and unpivoting data, 136
Power Query Editor, 143–152
query/load, 141–143
removing records, 162–167
sorting data, 167–169

Transform ribbon, 147–149

U
Unpivoting tables

dataset, 262
options, 263
pivoted dataset, 261–263

V
Virtual machines (VMs), 108

database dialog window, 109
dialog window, 109
SQL Server connection, 108

W, X, Y, Z
Web and cloud services

Azure sources, 91
blob storage, 110–112
data sources, 89
Dynamics 365, 102–104

Index

388

ever-increasing range, 89
online services, 90
platforms, 90
salesforce (see Salesforce)
security, 112
sources types, 113
SQL Database, 104–106

synapse analytics, 106, 107
virtual machines, 108–110
web pages, 90

advanced options, 93
navigator dialog, 93
source web page, 95
steps, 92
web dialog, 92

Web and cloud services (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What Is Power Query?
	Connecting to Source Data
	Data Transformation
	Loading into a Worksheet or the Data Model

	Integrating Power Query into Daily Workflows
	The Evolution of Power Query
	How to Use This Book
	On to Learning Power Query

	Chapter 1: Using Power Query to Discover and Load Data into Excel
	Power Query
	The Data Load Process
	Why Use Power Query?
	The Queries & Connections Pane
	Displaying the Queries & Connections Pane
	The Peek Window
	Peek Window Options
	View in Worksheet

	Deleting a Query
	Understanding Data Load
	The Navigator Dialog
	Select Multiple Source Tables
	Searching for Datasets
	Navigator Display Options
	Only Selected Items
	Enable Data Previews

	Refresh
	Source Data Refresh
	Data Preview Refresh
	Select Related Tables

	The Navigator Data Preview
	Modifying Data

	The Power Query Editor
	Data Sources
	Source Data Properties
	Query Properties
	Load Destinations
	Repurposing an Existing Connection
	Load to Excel
	Load to the Data Model

	Conclusion

	Chapter 2: Discovering and Loading File-Based Data with Power Query
	File Sources
	Loading Data from Files
	CSV Files
	What Is a CSV File?

	Text Files
	Text and CSV Options
	File Origin
	Delimiter
	Data Type Detection

	Fixed-Width Text Files
	Simple XML Files
	Excel Files
	Why Use Power Query to Connect to Excel
	From Table/Range
	Microsoft Access Databases

	JSON Files
	Conclusion

	Chapter 3: Loading Data from Databases and Data Warehouses
	Relational Databases
	SQL Server
	Automatically Loading Related Tables
	Database Options
	Server Connection
	Searching for Databases, Tables, and Views in Navigator
	Searching for Databases

	Searching for Tables
	Database Security
	Using a SQL Statement
	Stored Procedures in SQL Server

	Oracle Databases
	Other Relational Databases
	Microsoft SQL Server Analysis Services Data Sources
	From Analysis Services

	SSAS Tabular Data Warehouses
	Types of Credentials When Connecting
	Unable to Connect
	Other Database Connections
	Conclusion

	Chapter 4: Loading Data from the Web and the Cloud
	Web and Cloud Services
	Web Pages
	Online Services
	Microsoft Azure

	Web Pages
	Advanced Web Options
	Viewing the Source Web Page

	Salesforce
	Loading Data from Salesforce Objects
	Salesforce Reports

	Microsoft Dynamics 365
	Azure SQL Database
	Azure SQL Data Warehouse (Azure Synapse Analytics)
	Connecting to SQL Server on an Azure Virtual Machine
	Azure Blob Storage
	Azure Security
	Other Source Types
	Conclusion

	Chapter 5: Generic Data Sources
	ODBC Sources
	OLE DB Data Sources
	OData Feeds
	OData Options

	Refreshing Data
	Refreshing the Entire Data in the Excel In-Memory Model
	Refreshing an Individual Query

	Conclusion

	Chapter 6: Structuring Imported Data
	Extending Queries in Power Query
	Editing Data After a Data Load
	Transforming Data Before Loading

	Query or Load?
	The Power Query Editor
	The Applied Steps List
	The Power Query Editor Ribbons
	The Home Ribbon
	The Transform Ribbon
	The Add Column Ribbon
	The View Ribbon

	Dataset Shaping
	Renaming Columns
	Reordering Columns
	Removing Columns
	Choosing Columns
	Merging Columns
	Moving to a Specific Column

	Removing Records
	Keeping Rows
	Removing Rows
	Removing Blank Rows

	Removing Duplicate Records

	Sorting Data
	Reversing the Row Order
	Undoing a Sort Operation

	Filtering Data
	Selecting Specific Text Values
	Finding Elements in the Filter List
	Filtering Text Ranges
	Filtering Numeric Ranges
	Filtering Date and Time Ranges
	Filtering Numeric Data
	Applying Advanced Filters

	Grouping Records
	Simple Groups
	Complex Groups

	Count Rows
	Saving Changes in the Query Editor
	Exiting the Query Editor
	Conclusion

	Chapter 7: Data Transformation
	Viewing a Full Record
	Power Query Editor Context Menus
	Using the First Row as Headers
	Changing Data Type
	Detecting Data Types
	Data Type Indicators
	Switching Data Types
	Data Type Using Locale

	Replacing Values
	Transforming Column Contents
	Text Transformation
	Adding a Prefix or a Suffix
	Removing Leading and Trailing Spaces
	Removing Nonprinting Characters
	Number Transformations
	Calculating Numbers
	Date Transformations
	Time Transformations
	Duration

	Filling Down Empty Cells
	Extracting Part of a Column’s Contents
	Advanced Extract Options
	Text Before and After Delimiter
	Text Between Delimiters

	Duplicating Columns
	Splitting Columns
	Splitting Column by a Delimiter
	Advanced Options for Delimiter Split
	Splitting Columns by Number of Characters

	Merging Columns
	Creating Columns from Examples
	Adding Conditional Columns
	Index Columns
	Conclusion

	Chapter 8: Restructuring Data
	The Power Query Editor View Ribbon
	Merging Data
	Extending a Query with Merged Data
	Aggregating Data During a Merge Operation
	Merge as a New Query
	Types of Join
	Use the Original Column Name as the Prefix
	Search Columns to Expand

	Joining on Multiple Columns
	Preparing Datasets for Joins
	Correct and Incorrect Joins
	The Columns Do Not Map
	The Columns Map, but the Result Is a Massive Table with Duplicate Records

	Examining Joined Data

	Appending Data
	Adding the Contents of One Query to Another
	Appending the Contents of Multiple Queries

	Changing the Data Structure
	Unpivoting Tables
	Unpivot Options

	Pivoting Tables
	Transposing Rows and Columns

	Loading Data from Inside the Query Editor Directly
	Error Display
	Removing Errors
	Viewing Errors

	Data Transformation Approaches
	Conclusion

	Chapter 9: Complex Data Loads
	Adding Multiple Files from a Source Folder
	Filtering Source Files in a Folder
	Displaying and Filtering File Attributes
	Removing Header Rows After Multiple File Loads
	Combining Identically Structured Files
	Loading and Parsing JSON Files
	The List Tools Transform Ribbon
	Parsing XML Data from a Column
	Parsing JSON Data from a Column
	Complex JSON Files

	Complex XML Files
	Convert a Column to a List
	Reusing Data Sources
	Pinning a Data Source

	Copying Data from Power Query Editor
	Conclusion

	Chapter 10: Organizing and Managing Queries
	Managing the Transformation Process
	Modifying a Step
	Renaming a Step
	Deleting a Step or a Series of Steps

	Discarding Changes
	Modifying an Existing Step
	Adding a Step
	Altering Process Step Sequencing
	An Approach to Sequencing
	Error Records

	Managing Queries
	Organizing Queries
	Grouping Queries
	Creating a New Group
	Renaming Groups
	Adding a Query to a Group

	Duplicating Queries
	Referencing Queries
	Documenting Queries
	Adding a Column as a New Query

	Managing Queries from the Queries & Connections Pane
	Conclusion

	Chapter 11: Parameterizing Queries
	Parameterizing Queries
	Creating a Simple Parameter
	Creating a Set of Parameter Values
	Creating a Query-Based Parameter
	Modifying a Parameter
	Modifying the Structure of a Parameter

	Applying a Parameter When Filtering Records
	Modifying the Current Value of a Parameter
	Applying a Parameter to a Data Source
	Other Uses for Parameters
	Using Parameters in the Data Source Step
	Applying a Parameter to a SQL Query
	Query Icons

	Conclusion

	Chapter 12: The M Language
	What Is the M Language?
	M and the Power Query Editor
	Modifying the Code for a Step
	M Expressions

	Writing M by Adding Custom Columns
	The Advanced Editor
	Expressions in the Advanced Editor
	The Let Statement
	Modifying M in the Advanced Editor
	Syntax Checking

	Basic M Functions
	Text Functions
	Number Functions
	Date Functions
	Time Functions
	Duration Functions
	M Concepts
	M Data Types
	M Values
	Defining Your Own Variables in M

	Writing M Queries
	Lists
	Creating Lists Manually
	Generating Sequences Using Lists
	Accessing Values from a List
	List Functions
	Records
	Tables

	Other Function Areas
	Custom Functions in M
	Adding Comments to M Code
	Single-Line Comments
	Multiline Comments

	Conclusion

	Appendix A: Sample Data
	Downloading the Sample Data

	Index

